J. Am. Chem. Soc. 2000, 122, 3721-3730
3721
Stepwise versus Direct Long-Range Charge Separation in Molecular
Triads
R. J. Willemse,† J. J. Piet,‡ J. M. Warman,‡ F. Hartl,† J. W. Verhoeven,† and
A. M. Brouwer*,†
Contribution from the Institute of Molecular Chemistry, UniVersity of Amsterdam,
Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands, and IRI, Delft UniVersity of Technology,
Mekelweg 15, 2629 JB Delft, The Netherlands
ReceiVed October 22, 1998. ReVised Manuscript ReceiVed January 27, 2000
Abstract: Trifunctional electron donor-donor-acceptor molecules are described in which photoinduced charge
+
separation, D2-D1-A* f D2-D1+-A-, is followed by a charge migration step D2-D1+-A- (CS1) f D2
-
D1-A- (CS2), leading to a relatively long-lived charge-separated state. The rate of the charge migration process
could be determined in a range of solvents of low polarity. In benzene and dioxane, reversibility of the process
allowed the determination of the free energy difference between CS1 and CS2. The relative energy of the CS2
state is much lower than expected from simple electrostatic models. An increase of the charge migration rate
was found with increasing solvent polarity within a series of alkyl ethers or alkyl acetates. However, an apparent
preferential stabilization of the CS1 state in acetates relative to ethers leads to discontinuities in the
solvatochromic shift behavior of the CT fluorescence from the CS1 state, and in the increase of the charge
migration rate as a function of dielectric constant. In a reference compound lacking the intermediate redox
unit, direct long-range charge separation yielding a D2+-bridge-A- charge-separated state can occur, but the
yield is significantly lower than in the triads.
Introduction
The overall efficiency in multistep charge separation se-
quences depends critically on the competition between forward
charge separation steps and charge recombination processes. In
the “photosynthetic model systems” described in the literature,
large variations are found in the overall quantum yields and
lifetimes of the ultimate charge-separated state. What we find
particularly striking is the large variation in the rates of
recombination of the charge-separated states, remarkably rapid
recombination being found in some cases even with very
substantial distances between the charged sites.2,9,12,16
Many of the model systems studied require relatively polar
solvents to achieve charge separation, which has the drawback
that they usually do not work in immobilized media (in which
solvent reorganization is highly restricted) or at (very) low
temperatures. Moreover, the use of a polar solvent introduces a
large solvent reorganization term which tends to enhance the
rate of charge recombination considerably.9 Thus, being able
to separate charges in a medium of low polarity is an attractive
The process of photoinduced charge separation via a sequence
of short-range electron transfer steps as it occurs in natural
photosynthesis has inspired many chemists to design molecular
systems which may accomplish the same efficient and long-
lived charge separation. Some groups have used building blocks
that resemble the chromophores of Nature,1-3 and more or less
attempt to mimic the photosynthetic apparatus,4 while others
have implemented multistep charge separation schemes in very
differently constructed organic,5-14 inorganic,15-17 and supramo-
lecular systems.18-20
* Author to whom correspondence should be addressed. Fax +31 20
† University of Amsterdam.
‡ Delft University of Technology.
(1) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 1993, 26,
198.
(2) Osuka, A.; Marumo, S.; Mataga, N.; Taniguchi, S.; Okada, T.;
Yamazaki, I.; Nishimura, Y.; Ohno, T.; Nozaki, K. J. Am. Chem. Soc. 1996,
118, 155.
(3) Osuka, A.; Mataga, N.; Okada, T. Pure Appl. Chem. 1997, 69, 797.
(4) Wasielewski, M. R.; Gaines, G. L.; Wiederrecht, G. P.; Svec, W.
A.; Niemczyk, M. P. J. Am. Chem. Soc. 1993, 115, 10442.
(5) Mes, G. F.; van Ramesdonk, H. J.; Verhoeven, J. W. J. Am. Chem.
Soc. 1984, 106, 1335.
(6) Brouwer, A. M.; Mout, R. D.; Maassen van den Brink, P. H.; van
Ramesdonk, H. J.; Verhoeven, J. W.; Warman, J. M.; Jonker, S. A. Chem.
Phys. Lett. 1991, 180, 556.
(12) Roest, M. R.; Verhoeven, J. W.; Schuddeboom, W.; Warman, J.
M.; Lawson, J. M.; Paddon-Row, M. N. J. Am. Chem. Soc. 1996, 118,
1762.
(13) Greenfield, S. R.; Svec, W. A.; Gosztola, D.; Wasielewski, M. R.
J. Am. Chem. Soc. 1996, 118, 6767.
(14) Paddon-Row, M. N. Acc. Chem. Res. 1994, 27, 18.
(15) Sauvage, J. P.; Collin, J. P.; Chambron, J. C.; Guillerez, S.; Coudret,
C.; Balzani, V.; Barigelletti, F.; De Cola, L.; Flamigni, L. Chem. ReV. 1994,
4, 993.
(7) Wasielewski, M. R. Chem. ReV. 1992, 92, 435.
(8) Brouwer, A. M.; Eijckelhoff, C.; Willemse, R. J.; Verhoeven, J. W.;
Schuddeboom, W.; Warman, J. M. J. Am. Chem. Soc. 1993, 115, 2988.
(9) Van Dijk, S. I.; Wiering, P. G.; van Staveren, R.; van Ramesdonk,
H. J.; Brouwer, A. M.; Verhoeven, J. W. Chem. Phys. Lett. 1993, 214,
502.
(10) Van Dijk, S. I.; Wiering, P. G.; Groen, C. P.; Brouwer, A. M.;
Verhoeven, J. W.; Schuddeboom, W.; Warman, J. M. J. Chem. Soc.,
Faraday Trans. 1995, 91, 2107.
(16) Harriman, A.; Odobel, F.; Sauvage, J. P. J. Am. Chem. Soc. 1995,
117, 9461.
(17) Treadway, J. A.; Chen, P. Y.; Rutherford, T. J.; Keene, F. R.; Meyer,
T. J. J. Phys. Chem. A 1997, 101, 6824.
(18) Yonemoto, E. H.; Kim, Y. I.; Schmehl, R. H.; Wallin, J. O.;
Shoulders, B. A.; Richardson, B. R.; Haw, J. F.; Mallouk, T. E. J. Am.
Chem. Soc. 1994, 116, 10557.
(19) Keller, S. W.; Johnson, S. A.; Brigham, E. S.; Yonemoto, E. H.;
Mallouk, T. E. J. Am. Chem. Soc. 1995, 117, 12879.
(20) Feldheim, D. L.; Grabar, K. C.; Natan, M. J.; Mallouk, T. E. J.
Am. Chem. Soc. 1996, 118, 7640.
(11) Verhoeven, J. W.; Wegewijs, B.; Hermant, R. M.; Willemse, R. J.;
Brouwer, A. M. J. Photochem. Photobiol. A 1996, 95, 3.
10.1021/ja983716r CCC: $19.00 © 2000 American Chemical Society
Published on Web 04/04/2000