599
Y.-Z. Pan et al.
Letter
Synlett
amount of inexpensive electrolyte requirement. In compar-
ison with the reported metal catalysts or strong base condi-
tions for the synthesis of gem-bisarylthio enamines, our
present reaction conditions are mild, green, and environ-
mentally friendly without the use of metals, oxidants, or
harsh reaction conditions. Further investigations on their
applications will be carried out by our group in the future.
T.; Shi, X.; Jiao, N. Angew. Chem. Int. Ed. 2016, 55, 350.
(d) Hassner, A.; Levy, A. B. J. Am. Chem. Soc. 1971, 93, 5469.
(e) Dey, R.; Banerjee, P. Org. Lett. 2017, 19, 304. (f) Wang, Y.-F.;
Hu, M.; Hayashi, H.; Xing, B.; Chiba, S. Org. Lett. 2016, 18, 99.
(g) Zhang, F.-L.; Zhu, X.; Chiba, S. Org. Lett. 2015, 17, 3138.
(h) Lonca, G. H.; Tejo, C.; Chan, H. L.; Chiba, S.; Gagosz, F. Chem.
Commun. 2017, 53, 736. (i) Zhu, X.; Chiba, S. Chem. Commun.
2016, 52, 2473.
(11) (a) Padwa, A.; Rasmussen, J. K.; Tremper, A. J. Am. Chem. Soc.
1976, 98, 2605. (b) Xu, H.-D.; Zhou, H.; Pan, Y.-P.; Ren, X.-T.; Wu,
H.; Han, M.; Han, R.-Z.; Shen, M.-H. Angew. Chem. Int. Ed. 2016,
55, 2540. (c) Zhu, Z.; Tang, X.; Li, J.; Li, X.; Wu, W.; Deng, G.;
Jiang, H. Org. Lett. 2017, 19, 1370. (d) Tejeda, J. E. C.; Irwin, L. C.;
Kerr, M. A. Org. Lett. 2016, 18, 4738. (e) Siyang, H. X.; Ji, X. Y.;
Wu, X. R.; Wu, X. Y.; Liu, P. N. Org. Lett. 2016, 18, 2323. (f) Xiang,
L.; Niu, Y.; Pang, X.; Yang, X.; Yan, R. Chem. Commun. 2015, 51,
6598. (g) Zhu, Z.; Tang, X.; Li, X.; Wu, W.; Deng, G.; Jiang, H.
J. Org. Chem. 2016, 81, 1401. (h) Hu, B.; DiMagno, S. G. Org.
Biomol. Chem. 2015, 13, 3844.
(12) (a) Zhang, F.-L.; Wang, Y.-F.; Lonca, G. H.; Zhu, X.; Chiba, S.
Angew. Chem. Int. Ed. 2014, 53, 4390. (b) Katori, T.; Itoh, S.; Sato,
M.; Yamataka, H. J. Am. Chem. Soc. 2010, 132, 3413. (c) Hassner,
A.; Ferdinand, E. S.; Isbister, R. J. J. Am. Chem. Soc. 1970, 92,
1672. (d) Dey, R.; Banerjee, P. Org. Lett. 2017, 19, 304. (e) Zhang,
Z.; Kumar, R. K.; Li, G.; Wu, D.; Bi, X. Org. Lett. 2015, 17, 6190.
(13) (a) Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952.
(b) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem.
Int. Ed. 2005, 44, 5188. (c) Kolb, H. C.; Finn, M. G.; Sharpless, K. B.
Angew. Chem. Int. Ed. 2001, 40, 2004.
Funding Information
We thank the National Natural Science Foundation of China
(22061003), the Natural Science Foundation of Guangxi Province
(2019GXNSFAA245027), Bagui Scholars Program of Guangxi Zhuang
Autonomous Region (2016A13), and the Special Fund for Distin-
guished Experts in Guangxi of China for financial support.
N
ati
o
n
a
l
N
a
turalSc
i
e
n
ce
F
o
u
n
d
a
ti
o
n
o
f
C
h
i
n
a
(2
2
0
6
1
0
0
3)N
a
t
ura
l
S
c
i
e
n
c
e
F
o
u
n
dati
o
n
o
f
G
u
a
n
g
x
i
Pro
v
i
nc
e
(
2
0
1
9
G
X
N
S
F
A
A
2
4
5
0
2
7
)
B
a
g
u
i
Sc
h
o
l
ars
P
orgra
m
o
f
G
ua
n
g
x
i
Z
h
ua
n
g
A
u
t
o
n
o
m
o
us
R
e
g
i
o
n(
2
0
1
6
A
1
3
)
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gI
n
f
orm
a
ti
o
nS
u
p
p
orti
n
gInform
a
ti
o
n
References and Notes
(1) (a) Zhang, X.; Liu, C.; Deng, Y.; Cao, S. Org. Biomol. Chem. 2020,
18, 7540. (b) Fujita, T.; Fuchibe, K.; Ichikawa, J. Angew. Chem. Int.
Ed. 2019, 58, 390. (c) Zhang, X.; Cao, S. Tetrahedron Lett. 2017,
58, 375. (d) Chelucci, G. Chem. Rev. 2012, 112, 1344. (e) Hu, J.;
Han, X.; Yuan, Y.; Shi, Z. Angew. Chem. Int. Ed. 2017, 56, 13342.
(f) Hu, J.; Zhao, Y.; Shi, Z. Nat. Catal. 2018, 1, 860. (g) Yoo, W.-J.;
Kondo, J.; Rodríguez-Santamaría, J. A.; Nguyen, T. V. Q.;
Kobayashi, S. Angew. Chem. Int. Ed. 2019, 58, 6772. (h) Guo, Y.-
Q.; Wang, R.; Song, H.; Liu, Y.; Wang, Q. Org. Lett. 2020, 22, 709.
(2) Yao, C.; Wang, S.; Norton, J.; Hammond, M. J. Am. Chem. Soc.
2020, 142, 4793.
(14) Ning, Y.; Mekareeya, A.; Babu, K. R.; Anderson, E. A.; Bi, X. ACS
Catal. 2019, 9, 4203.
(15) (a) Qin, H.-T.; Wu, S.-W.; Liu, J.-L.; Liu, F. Chem. Commun. 2017,
53, 1696. (b) Chen, W.; Liu, X.; Chen, E.; Chen, B.; Shao, J.; Yu, Y.
Org. Chem. Front. 2017, 4, 1162.
(16) (a) Ning, Y.; Zhao, X.-F.; Wu, Y.-B.; Bi, X. Org. Lett. 2017, 19,
6240. (b) Wang, X.; Li, H.; Qiu, G.; Wu, J. Chem. Commun. 2019,
55, 2062.
(17) (a) Wang, Y.-F.; Chiba, S. J. Am. Chem. Soc. 2009, 131, 12570.
(b) Wang, Y.-F.; Toh, K. K.; Ng, E. P. J.; Chiba, S. J. Am. Chem. Soc.
2011, 133, 6411. (c) Lei, W.-L.; Feng, K.-W.; Wang, T.; Wu, L.-Z.;
Liu, Q. Org. Lett. 2018, 20, 7220. (d) Mao, L.-L.; Zheng, D.-G.; Zhu,
X.-H.; Zhou, A.-X.; Yang, S.-D. Org. Chem. Front. 2018, 5, 232.
(18) (a) Wang, X.-Y.; Zhong, Y.-F.; Mo, Z.-Y.; Wu, S.-H.; Xu, Y.-L.; Tang,
H.-T.; Pan, Y.-M. Adv. Synth. Catal. 2020, in press, DOI:
10.1002/adsc.202001192. (b) He, M.-X.; Mo, Z.-Y.; Wang, Z.-Q.;
Cheng, S.-Y.; Xie, R.-R.; Tang, H.-T.; Pan, Y.-M. Org. Lett. 2020, 22,
724. (c) Meng, X.-J.; Zhong, P.-F.; Wang, Y.-M.; Wang, H.-S.; Tang,
H.-T.; Pan, Y.-M. Adv. Synth. Catal. 2020, 362, 506.
(19) Kong, X.; Liu, Y.; Lin, L.; Chen, Q.; Xu, B. Green Chem. 2019, 21,
3796.
(20) Mulina, O. M.; Zhironkina, N. V.; Paveliev, S. A.; Demchuk, D. V.;
Terent’ev, A. O. Org. Lett. 2020, 22, 1818.
(21) Zhong, P.-F.; Lin, H.-M.; Wang, L.-W.; Mo, Z.-Y.; Meng, X.-J.;
Tang, H.-T.; Pan, Y.-M. Green Chem. 2020, 22, 6334.
(22) Ning, Y.; Zhao, X.-F.; Wu, Y.-B.; Bi, X. Org. Lett. 2017, 19, 6240.
(23) (a) Hassner, A.; Belinka, B. A. Jr. J. Am. Chem. Soc. 1980, 102,
6185. (b) Kong, X.; Liu, Y.; Lin, L.; Chen, Q.; Xu, B. Green Chem.
2019, 21, 3796.
(3) Uetake, Y.; Isoda, M.; Niwa, T.; Hosoya, T. Org. Lett. 2019, 21,
4933.
(4) Gao, Y.; Wu, Z.-Q.; Engle, K. M. Org. Lett. 2020, 22, 5235.
(5) Davis, F. A.; Mancinelli, P. A. J. Org. Chem. 1980, 45, 2597.
(6) Ni, J.; Mao, X.; Zhang, A. Adv. Synth. Catal. 2019, 9, 2004.
(7) (a) Fu, J.; Zanoni, G.; Anderson, E. A.; Bi, X. Chem. Soc. Rev. 2017,
46, 7208. (b) Hayashi, H.; Kaga, A.; Chiba, S. J. Org. Chem. 2017,
82, 11981. (c) Hu, B.; DiMagno, S. G. Org. Biomol. Chem. 2015,
13, 3844. (d) Jung, N.; Bräse, S. Angew. Chem. Int. Ed. 2012, 51,
12169.
(8) (a) Zhang, B.; Studer, A. Chem. Soc. Rev. 2015, 44, 3505.
(b) Wang, Y.-F.; Toh, K. K.; Ng, E. P. J.; Chiba, S. J. Am. Chem. Soc.
2011, 133, 6411. (c) Ning, Y.; Ji, Q.; Liao, P.; Anderson, E. A.; Bi,
X. Angew. Chem. Int. Ed. 2017, 56, 13805. (d) Wang, Y.-F.; Lonca,
G. H.; Chiba, S. Angew. Chem. Int. Ed. 2014, 53, 1067. (e) Shu, W.;
Lorente, A.; Gómez-Bengoa, E.; Nevado, C. Nat. Commun. 2017,
8, 13832. (f) Ning, Y.; Zhao, X.-F.; Wu, Y.-B.; Bi, X. Org. Lett. 2017,
19, 6240. (g) Wu, S.-W.; Liu, F. Org. Lett. 2016, 18, 3642. (h) Sun,
X.; Yu, S. Chem. Commun. 2016, 52, 10898.
(9) (a) Chen, W.; Hu, M.; Wu, J.; Zou, H.; Yu, Y. Org. Lett. 2010, 12,
3863. (b) Reddy, N. N. K.; Rao, S. N.; Ravi, C.; Adimurthy, S. ACS
Omega 2017, 2, 5235.
(10) (a) Gaydou, M.; Echavarren, A. M. Angew. Chem. Int. Ed. 2013, 52,
13468. (b) Zhang, F.-L.; Wang, Y.-F.; Lonca, G. H.; Zhu, X.; Chiba,
S. Angew. Chem. Int. Ed. 2014, 53, 4390. (c) Qin, C.; Su, Y.; Shen,
(24) General Procedure for the Synthesis of gem-Bisphenylthio
Enamine 3aa
The azide 1a (0.3 mmol), thiophenol 2a (0.75 mmol), DBU (0.6
mmol), and TBAI (0.03 mmol) were placed in a 10 mL three-
necked round-bottomed flask. The flask was equipped with a
© 2020. Thieme. All rights reserved. Synlett 2021, 32, 593–600