Journal of the American Chemical Society
Article
Organometallics 1985, 4, 1537. For a review dealing with alcoxy metal
species, see: Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163.
(27) Hartwig, J. F. Inorg. Chem. 2007, 46, 1936.
(50) For isolation of three-coordinate Ni(I)−silyl complexes, see: Iluc,
V. M.; Hillhouse, G. L. J. Am. Chem. Soc. 2010, 132, 11890.
(51) (a) Minidola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2001, 123,
4623. (b) Vicic, D. A.; Jones, W. D. J. Am. Chem. Soc. 1997, 119, 10855.
(52) Jonas, K.; Wilke, G. Angew. Chem., Int. Ed. 1970, 9, 312. We found
that 12 was not catalytically competent in our reaction protocol.
(53) For selected applications of Ni(I)−H dimers utilizing bidentate
backbones, see: (a) Smith, E. E.; Du, G.; Fanwick, P. E.; Abu-Omar, M.
M. Organometallics 2010, 29, 6527. (b) Torres-Nieto, J.; Brennessel, W.
W.; Jones, W. D.; Garcia, J. J. J. Am. Chem. Soc. 2009, 131, 4120.
(c) García, J. J.; Brunkan, N. M.; Jones, W. D. J. Am. Chem. Soc. 2002,
124, 9547. (d) Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D.
Organometallics 1999, 18, 4040.
(28) (a) Jolly, P. W.; Jonas, K.; Kruger, C.; Tsay, Y.-H. J. Organomet.
̈
Chem. 1971, 33, 109. (b) Aresta, M.; Nobile, C. F.; Sacco, A. Inorg. Chim.
Acta 1974, 12, 167.
(29) Analytically pure 11 was only obtained in trace amounts (<5%
yield) after recrystallization.
(30) Carmona, E.; Marin, J. M.; Palma, P.; Paneque, M.; Poveda, M. L.
Inorg. Chem. 1989, 28, 1895.
(31) For an example, see: Furstner, A.; Majima, K.; Martin, R.; Krause,
̈
H.; Kattnig, E.; Goddard, R.; Lehmann, W. J. Am. Chem. Soc. 2008, 130,
1992.
(54) The structure of 12 was discussed in ref 52, but no X-ray
crystallography was shown.
(32) Taking into consideration that TMDSO and Et3SiH were equally
effective for promoting the Ni-catalyzed reductive cleavage of C−OMe
bonds, we decided to employ for our isotope-labeling studies
commercially available Et3SiH and Et3SiD
(33) (a) Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51,
́
3066. (b) Gomez-Gallego, M.; Sierra, M. A. Chem. Rev. 2011, 111, 4857.
(34) Reaction of 1 with Ni(COD)2 (5 mol %), PCy3 (10 mol %), and
Et3SiH:Et3SiD (1:1, 2 equiv) gave rise to 5 and 5-D (1:1 ratio)
(35) For a full reference of Gaussian-09, see Supporting Information.
(36) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. (b) Wadt,
W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. (c) Hay, P. J.; Wadt, W. R.
J. Chem. Phys. 1985, 82, 299.
(37) (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (c) Kohn, W.; Becke, A.
D.; Parr, R. G. J. Phys. Chem. 1996, 100, 12974.
(38) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
(39) (a) Fuentealba, P.; Preuss, H.; Stoll, H.; Szentpaly, L. V. Chem.
Phys. Lett. 1982, 89, 418. (b) Szentpaly, L. V.; Fuentealba, P.; Preuss, H.;
Stoll, H. Chem. Phys. Lett. 1982, 93, 555.
(55) Our results are in analogy with other Ni(I) complexes, see, for
example: (a) Uyeda, C.; Peters, J. C. Chem. Sci. 2013, 4, 157. (b) Klein,
A.; Vicic, D. A.; Biewer, C.; Kieltsch, I.; Stirnat, K.; Hamacher, C.
Organometallics 2012, 31, 5334. (c) Kraikivskii, P. B.; Saraev, V. V.;
Meusinger, R.; Bocharova, V. V.; Ushakov, I. A.; Petrovskii, S. K. J.
Organomet. Chem. 2012, 715, 43. (d) Bai, G.; Wei, P.; Stephan, S. W.
Organometallics 2005, 24, 5901. (e) Holland, P. L.; Cundari, T. R.; Perez,
L. L.; Eckert, N. A.; Lachicotte, R. J. J. Am. Chem. Soc. 2002, 124, 14416.
(56) Unfortunately, the Ni(I)−H dimer with PCy3 is not computa-
tionally tractable, as it contains four PCy3 and more than 200 atoms
(57) For a Ni(I)−H insertion into arene motifs, see: Lin, S.; Day, M.
W.; Agapie, T. J. Am. Chem. Soc. 2011, 133, 3828.
(58) For very recent heterogeneous Ni-catalyzed reductive cleavage of
C−OAr bonds, see: (a) Sergeev, A. G.; Hartwig, J. F. J. Am. Chem. Soc.
2012, 134, 20226. (b) Parsell, T. H.; Owen, B. C.; Klein, I.; Jarrell, T. M.;
Marcuum, C. L.; Hupert, L. J.; Amundson, L. M.; Kenttamaa, H. I.;
̈
Ribeiro, F.; Miller, J. T.; Abu-Omar, M. M. Chem. Sci. 2013, 4, 806.
(c) He, J.; Zhao, C.; Lercher, J. A. J. Am. Chem. Soc. 2012, 134, 20768.
(59) (a) Crabtree, R. H. Chem. Rev. 2012, 112, 1536. (b) Widegren, J.
A.; Finke, R. G. J. Mol. Catal. A 2003, 198, 317. (c) Yu, K. Q.; Sommer,
W.; Weck, M.; Jones, C. W. J. Catal. 2004, 226, 101. (d) Foley, P.;
Dicosimo, R.; Whitesides, G. M. J. Am. Chem. Soc. 1980, 102, 6713.
(60) For similar discrepancies regarding the Hg drop test reacting with
homogeneous catalysts, see: Stein, J.; Lewis, L. N.; Gao, Y.; Scott, R. A. J.
Am. Chem. Soc. 1999, 121, 3693.
(40) (a) Cances
3032. (b) Cossi, M.; Barone, V.; Mennuci, B.; Tomasi, J. Chem. Phys.
Lett. 1998, 286, 253. (c) Tomasi, J.; Mennucci, B.; Cances, E. J. Mol.
Struct. (THEOCHEM) 1999, 464, 21.
̀
, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107,
̀
(41) No significant differences in free activation energies were
observed when computing Et3SiH vs Me3SiH.
(42) B3LYP has been shown to underestimate the dissociation
energies of PCy3 in other organometallic complexes, see: Zhao, Y.;
Truhlar, D. G. J. Chem. Theory Comput. 2009, 5, 324.
(43) For this reason, only M06 values will be used for the mechanistic
discusion. B3LYP values are collected in the Supporting Information
(44) These results are in sharp contrast with the proposed mechanism
for cleavage of C−OAc bonds (ref 6) in which transmetalation and not
oxidative addition is rate determining.
(61) For a selected number of references that leave some doubt about
the Hg drop test for identifying whether heterogeneous systems are
present or not in other homogeneous reactions, see: (a) Esfandiari, N.
M.; Blum, S. A. J. Am. Chem. Soc. 2011, 133, 18145. (b) Widegren, J. A.;
Finke, R. G. J. Mol. Catal. A. 2003, 198, 317. (c) van Asselt, R.; Elsevier,
C. J. J. Mol. Catal. 1991, 65, L13. (d) Jones, R. A.; Real, F. M.; Wilkinson,
G.; Galas, A. M. R.; Hurthouse, M. B. J. Chem. Soc., Dalton Trans. 1981,
126.
(62) At present we cannot rule out the presence of Ni(I) clusters that
are in equilibrium with their corresponding Ni(I) homogeneous
monomers. Recently, related Ni(I) clusters have been reported in the
literature, see: Beck, R.; Shoshani, M.; Johnson, S. A. Angew. Chem., Int.
Ed. 2012, 51, 11753.
(45) Similar experiments were performed for other reductive cleavage
protocols, see: Baxter, R. D.; Montgomery, J. J. Am. Chem. Soc. 2011,
133, 5728.
(46) For selected references, see: (a) Tanabe, M.; Yumoto, R.;
Osakada, K.; Sanji, T.; Tanaka, M. Organometallics 2012, 31, 6787.
(b) Beck, R.; Johnson, S. A. Organometallics 2012, 31, 3599. (c) Tanabe,
M.; Yumoto, R.; Osakada, K. Chem. Commun. 2012, 48, 2125.
(d) Takaya, J.; Iwasawa, N. Dalton Trans. 2011, 40, 8814. (e) Iluc, V.
M.; Hillhouse, G. L. J. Am. Chem. Soc. 2010, 132, 11890. (f) Chen, W.;
Shimada, S.; Tanaka, M.; Kobayashi, Y.; Saigo, K. J. Am. Chem. Soc. 2004,
126, 8072.
(47) For a related σ-bound Ni(0) borane complex, see: Crestani, M.
́
G.; Munoz-Hernandez, M.; Arevalo, A.; Acosta-Ramirez, A.; Garcia, J. J.
̃
J .Am. Chem. Soc. 2005, 127, 18066.
(48) Iluc, V. M.; Hillhouse, G. L. Tetrahedron 2006, 63, 7577.
(49) For selected comproportionation events in route to Ni(I) species,
see: (a) Velian, A.; Lin, S.; Miller, A. J. M.; Day, M. W.; Agapie, T. J. Am.
Chem. Soc. 2010, 132, 6296. (b) Phapale, V. B.; Bunuel, E.; García-
̃
́
Iglesias, M.; Cardenas, D. J. Angew. Chem., Int. Ed. 2007, 46, 8790.
(c) Jones, G. D.; Martin, J. L.; McFarland, C.; Allen, O. R.; Hall, R. E.;
Haley, A. D.; Brandon, R. J.; Konovalova, T.; Desrochers, P. J.; Pulay, P.;
Vicic, D. A. J. Am. Chem. Soc. 2006, 128, 13175.
2009
dx.doi.org/10.1021/ja311940s | J. Am. Chem. Soc. 2013, 135, 1997−2009