V. Arjunan et al. / Journal of Molecular Structure 1037 (2013) 305–316
315
Table 5
The experimental and calculated 1H and 13C isotropic chemical shifts (diso, ppm) with respect to TMS and isotropic magnetic shielding tensors (
riso) of 4-hydroxy-1-thiocoumarin
by B3LYP/6-311++G(d,p) method.
Assignment
riso (1H)
Cal. (diso
)
Expt. (d)
Assignment
riso
(
13C)
Cal. (diso
)
Expt. (d)
H11
H12
H13
H14
H15
H18
26.35
23.77
24.56
24.44
24.50
27.51
5.62
8.20
7.41
7.53
7.47
4.46
5.68
11.71
7.18
7.78
7.46
3.41
C2
C3
C4
C5
C6
C7
C8
C9
C10
0.74
79.13
15.81
53.58
54.30
48.84
53.96
35.88
57.73
183.79
105.40
168.72
130.95
130.23
135.69
130.57
148.65
126.80
182.45
103.26
166.93
131.48
123.79
126.84
126.09
136.88
126.38
proton (H12) by means of a weak intramolecular hydrogen bonding
of the type C5–H12ꢂ ꢂ ꢂO17 which reduces the electron density on
H12 resulted in downfield chemical shift. The aromatic protons ap-
peared downfield signals at d values 7.18, 7.78 and 7.46 for protons
H13, H14 and H15, respectively. The protons H13 and H14 gives
multiplet signals while H15 gives a singlet. The upfield signal at d
5.68 ppm corresponds to olefinic proton of heterocyclic ring. In gen-
eral due to deshielding effect of oxygen atom, the signal for hydro-
xyl proton may be in downfield [64] but in 4-hydroxy-1-
thiocoumarin due to intramolecular hydrogen bonding of oxygen
atom of hydroxyl group, d value of hydroxyl proton (H18) is ob-
served in upfield at 3.41 ppm. The calculated chemical shifts are
in good agreement with the experimental values. The correlation
of the calculated and experimental 1H and 13C chemical shifts of
4-hydroxy-1-thiocoumarin are presented in Supplementary Fig. S3.
References
[1] M. Darbarwar, V. Sundaramurthy, Synthesis (1982) 337.
[2] R.S. Bezwada, Chemistry of Coumarin, Indofine Chemical Company,
Hillsborough, 2008.
[3] P. Munshi, T.N. Guru Row, Crystallogr. Rev. 11 (2005) 199.
[4] J.C. Jung, J.C. Kim, O.S. Park, B.S. Jang, Arch. Pharm. Res. 22 (1999) 302.
[5] H. Nakazumi, T. Kitao, Chem. Lett. (1978) 929.
[6] H. Nakazumi, A. Asada, T. Kitao, Bull. Chem. Soc. Jpn. 53 (1980) 2046.
[7] H. Nakazumi, T. Ueyama, H. Sonoda, T. Kitao, Bull. Chem. Soc. Jpn. 57 (1984)
2323.
[8] K. Tamura, T. Ishihara, H. Yamanaka, J. Fluorine Chem. 68 (1994) 25.
[9] R. Rios, H. Sunden, I. Ibrahem, G.L. Zhao, A. Cordova, Tetrahedron Lett. 47
(2006) 8679.
[10] J.A. Panetta, H. Rapoport, J. Org. Chem. 47 (1982) 2626.
[11] P. Kumar, M.S. Bodas, Tetrahedron 57 (2001) 9755.
[12] Y. Ito, Med. Entomol. Zool. 54 (2003) 337.
[13] J.C. Jung, S. Jang, O.H. Seikwan, O.S. Park, J. Chem. Sci. 122 (2010) 833.
[14] S.H. Jurgen Conrad, H. Leutbecher, S. Strobel, T. Schleid, U. Beifuss, J. Org. Chem.
74 (2009) 7230.
[15] B. Prasanna, G.V.P. Chandramouli, Sulfur Silicon Relat. Elem. 179 (2004) 2059.
[16] H. Nakazumi, Y. Kobara, T. Kitao, J. Heterocycl. Chem. 29 (1992) 135.
[17] O. Meth-Cohn, B. Tarnowski, in: A.R. Katritzky, A.J. Boulton (Eds.), Advances in
Heterocyclic Chemistry, vol. 26, Academic Press, New York, 1980, pp. 122.
[18] P.C. Rath, K. Rajagopal, Ind. J. Chem. 9 (1971) 91.
[19] A. Ruwet, C. Draguet, M. Renson, Bull. Soc. Chem. Belg. 79 (1970) 639.
[20] S. Kikionis, V. Mckee, J. Markopoulos, O.L. Markopoulo, Tetrahedron 64 (23)
(2008) 5454.
[21] W. Askar, M.H. Elnagdi, S.M. Fahmy, J. Prakt. Chem. 313 (1971) 715.
[22] S.E. Davis, A.C. Church, R.C. Tummons, C.F. Beam, J. Heterocycl. Chem. 34(4)
(1997) 1159.
[23] P. Munshi, T.N.G. Row, J. Phys. Chem. A 109 (2005) 659.
[24] J.C. Jung, J.C. Kim, O.S. Park, Syn. Commun. 30 (2000) 1193.
[25] A.D. Becke, Phys. Rev. A 38 (1988) 3098.
8. Conclusion
The optimized molecular structures, vibrational frequencies and
corresponding vibrational assignments of 4-hydroxy-1-thiocoum-
arin have been calculated using B3PW91 levels with 6-
311++G(d,p) and B3LYP levels with 6-311++G(d,p), cc-pVTZ, 6-
31G(d,p) basis sets. A remarkable reduction is seen in the bond an-
gle of S1–C2–O16 (117.3°) due the high electro negativity of sulfur
and oxygen atoms. The comparison of the experimental and calcu-
lated spectra of the 4-hydroxy-1-thiocoumarin showed that calcu-
lated method is in good agreement with experimental results.
Theoretical 1H and 13C chemical shift values (with respect to
TMS) were reported and compared with the experimental data,
showing good agreement for both 1H and 13C. NBO analysis shows
that charge transfer mainly due to C–C group and shows interac-
tion between the ‘filled’ donor-type NBO and ‘empty’ acceptor-type
NBO in the molecule and their stabilization energies are estimated
by second order Fock matrix. The intramolecular charge transfer in
[26] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[27] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[28] T.H. Dunning Jr., J. Chem. Phys. 90 (1989) 1007.
[29] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro,
M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J.
Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth,
P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman,
J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford, CT, 2009.
[30] H. Fuhrer, V.B. Kartha, K.L. Kidd, P.J. Kruger, H.H. Mantsch, Computer Program
for Infrared and Spectrometry, Normal Coordinate Analysis, vol. 5, National
Research Council, Ottawa, Canada, 1976.
[31] J.S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and
Applications, Elsevier, Amsterdam, 1996.
[32] S. Chidangil, M.K. Shukla, P.C. Mishra, J. Mol. Model. 4 (1998) 250.
[33] R.I. Dennington, T. Keith, J. Millam, GaussView, Version 5.0.8, Semichem. Inc.,
Shawnee Mission, KS, 2008.
[34] E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52 (1984) 997.
[35] F. Furche, R.J. Ahlrichs, J. Chem. Phys. 117 (2002) 7433.
[36] R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256 (1996) 454.
[37] C. Jamorski, M.E. Casida, D.R. Salahub, J. Chem. Phys. 104 (1996) 5134.
[38] I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and
Sons, New York, 1976. pp. 5–27.
4-hydroxy-1-thiocoumarin from
p
(C3–C4) to pꢀ(C2–O16) has the
stabilization energy of 22.37 kcal molꢁ1. The presence of intramo-
lecular interaction and the frontier molecular orbital energies are
determined. The total electron density and electrostatic potential
of the title compound were determined by natural bond orbital
analysis. The electronegative oxygen atom (O17) present in the
carbon atom (C4) deshields the proton (H12) by means of a weak
intramolecular hydrogen bonding of the type C5–H12ꢂ ꢂ ꢂO17 which
reduces the electron density on H12 resulted in downfield chemi-
cal shift. Among the various methods used for the analysis B3LYP
method with 6-311++G(d,p) and cc-pVTZ basis sets are more
reliable.
Appendix A. Supplementary material
[39] V. Krishnakumar, G. Keresztury, T. Sundius, R. Ramasamy, J. Mol. Struct. 702
(2004) 9.
[40] A. Dolmella, S. Gatto, E. Girardi, G. Bandoli, J. Mol. Struct. 513 (1999) 177.
[41] S. Kikionis, V. Mckee, J. Markopoulos, O. Igglessi-Markopoulou, Tetrahedron 64
(2008) 5454.
Supplementary data associated with this article can be found, in