K. He, B. R. Shaw / Bioorg. Med. Chem. Lett. 11 (2001) 615±617
617
deprotection of the 50-O-DMT group by acid treatment
and ion-exchange chromatography puri®cation, the
desired 20,30-cyclic UMPB 9 was obtained in good yield
(70% overall, 1!9).19 The two diastereomers of 20,30-
cyclic UMPB 9, arbitrarily named as isomer I and II,
were separated by HPLC (Fig. 1B).20
13. 50-O-DMT-uridine 30-2 and 20-H-phosphonates 3 (72%,
31P NMR (CDCl3) d 8.5 (s), 7.2 (s); MS (FABÀ) 610.08 (calcd
610.56 for C30H31N2O10P)) were synthesized by phosphoryla-
tion of 50-O-DMT-uridine 1 by 4-chloro-4H-1,3,2-benzodioxa-
phosphorin-4-one and subsequent treatment with triethyl-
ammonium bicarbonate (TEAB) (Marugg, J. E.; Tromp, M.;
Kuyl-Yeheskiely, E.; van der Marel, G. A.; van Boom, J. H.
Tetrahedron Lett. 1986, 27, 2661).
14. 20,30-Cyclic-UMPS 6 (40%): 31P NMR (D2O) d 77.6 (s),
76.3 (s); 1H NMR (D2O) d 7.56, 7.55 (2d, J=8.0 Hz, 1H, H-6),
5.83, 5.75 (2d, J=3.2 Hz, 1H, H-10), 5.70, 5.69 (2d, J=8.0 Hz,
1H, H-5), 5.08 (m, 1H, H-20), 4.88±4.78 (m, 1H, H-30), 4.26,
4.17 (2m, 1H, H-40), 3.76±3.63 (m, 2H, H-50); MS (FABÀ)
320.98 (calcd 321.20 for C9H10N2O7PS).
During the preparation of this manuscript, a new e-
cient method utilizing the same intermediate 20,30-cyclic
H-phosphonate 4 to synthesize 20,30-cyclic-NMPS 6 has
been reported.21 The reaction of 50-O-DMT protected
nucleosides with diphenyl H-phosphonate in pyridine led
to the formation of intermediate 4, which upon sulfuriza-
tion and the subsequent removal of 50-DMT, gave 20,30-
cyclic-NMPS in 78±93% yields.21
15. 20,30-Cyclic-UMPS 6, isomer I (Sp, exo): rt=6.58 min
1
(33%); 31P NMR (D2O) d 77.6 (s); H NMR (D2O) d 7.54 (d,
J=8.4 Hz, 1H, H-6), 5.74 (m, 1H, H-10), 5.67 (d, J=7.6 Hz,
1H, H-5), 5.05 (m, 1H, H-20), 4.80 (m, 1H, H-30), 4.15 (m, 1H,
H-40), 3.73±3.60 (m, 2H, H-50); MS (FABÀ) 321.01 [M]À (calcd
321.20 for C9H10N2O7PS). 20,30-Cyclic-UMPS 6, isomer II
(Rp, endo): rt=10.24 min (47%); 31P NMR (D2O) d 76.1 (s);
1H NMR (D2O) d 7.52 (d, J=8.0 Hz, 1H, H-6), 5.79 (m, 1H,
H-10), 5.64 (d, J=8.0 Hz, 1H, H-5), 5.01 (m, 1H, H-20), 4.78
(m, 1H, H-30), 4.20 (m, 1H, H-40), 3.70±3.58 (m, 2H, H-50);
MS (FABÀ) 321.00 [M]À (calcd 321.20 for C9H10N2O7PS).
16. Sergueev, D.; Hasan, A.; Ramaswamy, M.; Shaw, B. R.
Nucleosides Nucleotides 1997, 16, 1533.
In summary, the ®rst 20,30-cyclic boranophosphate ana-
logue, 20,30-cyclic-UMPB, has been synthesized by an
H-phosphonate approach, which involves the silylation
of a 20,30-cyclic H-phosphonate intermediate followed
by boronation.16À18 The availability of the two diastereo-
mers of 20,30-cyclic-UMPB should be useful for deter-
mining the absolute con®gurations of other borano-
phosphate analogues.22À28 The potential of cyclic
boranophosphates as substrates or inhibitors for ribo-
nucleases should also provide valuable information
about the mechanisms of such ribonuclease-catalyzed
reactions.
17. Sergueev, D .; Shaw, B. R.J. Am. Chem. Soc. 1998, 120, 9417.
18. He, K.; Sergueev, D.; Sergueeva, Z.; Shaw, B. R. Tetra-
hedron Lett. 1999, 40, 4601.
19. 20,30-Cyclic-UMPB 9 (70%): 31P NMR (D2O) d 120.7 (q,
J=125.85 Hz), 116.10 (q, J=124.88 Hz); 1H NMR (D2O) d
7.48 (d, J=8.0 Hz, 1H, H-6), 5.74 (2d, J=3.2 Hz, 1H, H-10),
5.64 (m, 1H, H-5), 4.98±4.92 (m, 1H, H-20), 4.79 (q, J=5.6 Hz,
1H, H-30), 4.17, 4.01 (2q, J=4.0 Hz, 1H, H-40), 3.68±3.56
(m, 2H, H-50); MS (FABÀ) 303.07 (calcd 303.00 for
C9H13BN2O7P).
Acknowledgements
This work was supported by grant GM-57693 from the
NIH to B.R.S. Helpful discussions with Dr. Dmitri
Sergueev, Dr. Zinaida Sergueeva, and Mr. Jinlai Lin are
greatly appreciated. The authors thank Dr. Zinaida
Sergueeva for reading the manuscript and Dr. George
Dubay for doing mass spectroscopy.
20. 20,30-Cyclic-UMPB 9, isomer I: rt=9.40 min (39%); 31P
NMR (D2O) d 120.8 (q, J=145.71 Hz); 1H NMR (D2O) d 7.38
(d, J=7.6 Hz, 1H, H-6), 5.75 (m, 1H, H-10), 5.60 (d,
J=7.2 Hz, 1H, H-5), 5.03 (m, 1H, H-20), 4.79 (m, 1H, H-30),
4.19 (q, J=4.0 Hz, 1H, H-40), 3.74±3.62 (m, 2H, H-50); MS
(FABÀ) 303.0 [M]À (calcd 303.00 for C9H13BN2O7P). 20,30-
Cyclic-UMPB 9, isomer II: rt=19.11 min (43%); 31P NMR
1
References and Notes
(D2O) d 116.1 (q, J=130.17 Hz); H NMR (D2O) d 7.41 (d,
J=7.6 Hz, 1H, H-6), 5.68 (d, J=2.8 Hz, 1H, H-10), 5.62 (d,
J=7.6 Hz, 1H, H-5), 5.05 (m, J=3.2 Hz, 1H, H-20), 4.87 (q,
J=6.0 Hz, 1H, H-30), 4.02 (q, J=3.2 Hz, 1H, H-40), 3.75±3.63
(m, 2H, H-50); MS (FABÀ) 303.0 [M]À (calcd 303.00 for
C9H13BN2O7P).
1. Perreault, D. M.; Anslyn, E. V. Angew. Chem., Int. Ed.
Engl. 1997, 36, 432.
2. Eckstein, F. Annu. Rev. Biochem. 1985, 54, 367.
3. Saenger, W.; Eckstein, F. J. Am. Chem. Soc. 1970, 92, 4712.
4. Eckstein, F.; Schulz, H. H.; Ruterjans, H.; Haar, W.;
Maurer, W. Biochemistry 1972, 11, 3507.
21. Jankowska, J.; Wenska, M.; Popenda, M.; Stawinski, J.;
Kraszewski, A. Tetrahedron Lett. 2000, 41, 2227.
22. Tomasz, J.; Shaw, B. R.; Porter, K.; Spielvogel, B. F.;
Sood, A. Angew. Chem., Int. Ed. Engl. 1992, 31, 1373.
23. Sood, A.; Shaw, B. R.; Spielvogel, B. F. J. Am. Chem.
Soc. 1990, 112, 9000.
24. Krzyzanowska, B. K.; He, K.; Hasan, A.; Shaw, B. R.
Tetrahedron 1998, 54, 5119.
25. Sergueeva, Z. A.; Sergueev, D. S.; Shaw, B. R. Tetra-
hedron Lett. 1999, 40, 2041.
5. Heaton, P. A.; Eckstein, F. Nucleic Acids Res. 1996, 24,
850.
6. Koizumi, M.; Ohtsuka, E. Biochemistry 1991, 30, 5145.
7. Shaw, B. R.; Sergueev, D.; He, K.; Porter, K.; Summers, J.;
Sergueeva, Z.; Rait, V. Methods Enzymol. 1999, 313, 227.
8. He, K.; Hasan, A.; Krzyzanowska, B.; Shaw, B. R. J. Org.
Chem. 1998, 63, 5769.
9. Eckstein, F.; Gindl, H. Chem. Ber. 1968, 101, 1670.
10. Oivanen, M.; Ora, M.; Almer, H.; Stromberg, R.; Lonn-
berg, H. J. Org. Chem. 1995, 60, 5620.
26. He, K.; Porter, K.; Hasan, A.; Briley, J. D.; Shaw, B. R.
Nucleic Acids Res. 1999, 27, 1788.
11. Ludwig, J.; Eckstein, F. J. Org. Chem. 1989, 54, 631.
12. Holy, A.; Kois, P. Collect. Czech. Chem. Commun. 1980,
45, 2817.
27. Lin, J.; Shaw, B. R. Chem. Commun. 1999, 1517.
28. He, K.; Shaw, B. R. Nucleic Acids Symp. Ser. 1999, 41,
99.