Reductive cleavage of 7 using Na(CN)BH3 in trifluoroacetic
acid afforded 8 as a ca. 1:5 mixture of C(17) and C(19)
p-methoxyphenyl ethers which were readily separated by
flash chromatography.10 The major isomer was methylated,
the p-methoxyphenyl group was removed, and the resulting
alcohol was oxidized to complete the synthesis of aldehyde
4.
Scheme 1
The synthesis of aldehyde 12, which can be viewed as a
pseudo enantiomer of aldehyde 4, started from methyl ester
9, readily derived from L-ascorbic acid in six easily scalable
steps (Scheme 3).11 Reduction of 9 using LiAlH4 in THF
Scheme 3
chemical control. In this case Crimmins’ aldol methodology
presented an attractive solution since this would require the
preparation of a single acyloxazolidinethione in order to
access both syn aldol isomers.5
Our first objective was the preparation of aldehyde 4
starting from known tris-trimethylsilyl ether 6, readily derived
from L-malic acid (Scheme 2).6,7 Anisylidene formation under
Scheme 2
followed by acetonide removal employing palladium(II)
catalysis and per-silylation provided ent-6.12 Next, conversion
to the 1,3-anisylidene followed by methylation of the
remaining primary alcohol gave 10. We found that reductive
cleavage of 10 with DIBAL in dichloromethane resulted in
selective protection of the C(25) alcohol as its p-methoxy-
(6) Kocienski, P. J.; Yeates, C.; Street, S. D. A.; Campbell, S. F. J. Chem.
Soc., Perkin Trans. 1 1987, 2183-2187.
Noyori conditions followed by benzylation of the resulting
(7) Sprung, M. M.; Nelson, L. S. J. Org. Chem. 1955, 20, 1750-1756.
(8) (a) Breuilles, P.; Oddon, G.; Uguen, D. Tetrahedron Lett. 1997, 38,
6607-6610. (b) Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett.
1980, 21, 1357-1358.
primary alcohol gave 1,3-anisylidene 7 as the only isomer.8,9
(4) (a) Evans, D. A.; Yang, M. G.; Dart, M. J.; L.; Duffy, J. L.; Kim, A.
S. J. Am. Chem. Soc. 1995, 117, 9598-9599. (b) Evans, D. A.; Dart, M.
J.; Duffy, J. L.; Yang, M. G. J. Am. Chem. Soc. 1996, 118, 4322-4343.
(c) Reetz, M. T.; Jung, A. J. Am. Chem. Soc. 1983, 105, 4833-4845.
(5) (a) Crimmins, M. T.; King, B. W.; Tabet, E. A. J. Am. Chem. Soc.
1997, 119, 7883-7884. (b) Crimmins, M. T.; Chaudhary, K. Org. Lett.
2000, 2, 775-777. (c) Yan, T.-H.; Tan, C.-W.; Lee, H.-C.; Lo, H.-C.;
Huang, T.-Y. J. Am. Chem. Soc. 1993, 115, 2613-2621. (d) Nerz-Stormes,
M.; Thorton, E. R. J. Org. Chem. 1992, 56, 2489-2498.
(9) All new compounds gave characterization data that are fully consistent
with the assigned structures.
(10) Johansson, R.; Samuelsson, B. J. Chem. Soc., Perkin Trans. 1 1984,
2371-2374.
(11) (a) Wei, C. C.; Debernardo, S.; Tengi, J. P.; Borgese, J.; Weigele,
M. J. Org. Chem. 1985, 50, 3462-3467. (b) Tanaka, A.; Yamashita, K.
Synthesis 1987, 570-573.
(12) Lipshutz, B. H.; Pollart, D.; Monforte, J.; Kotsuki, H. Tetrahedron
Lett. 1985, 26, 705-708.
1440
Org. Lett., Vol. 2, No. 10, 2000