ORGANIC
LETTERS
2000
Vol. 2, No. 10
1391-1393
Synthesis of the Ezomycin Nucleoside
Disaccharide
Spencer Knapp* and Vijay K. Gore
Department of Chemistry, RutgerssThe State UniVersity of New Jersey,
610 Taylor Road, Piscataway, New Jersey 08854-8087
Received February 19, 2000
ABSTRACT
A protected ezomycin octosyl nucleoside was glycosylated at O-6′ with a protected ezoaminuroic acid donor to afford, following several
functional group modifications, the title compound 1 (≡ 4-desamino-4-oxoezomycin A2).
The ezomycins are a class of fermentation-derived complex
nucleoside antibiotics1 whose structures were elucidated in
the 1970s.2,3 They feature an unusual combination of parts:
an octosyl nucleoside, a [1′′f6′]-â-glycosylating 3-amino-
3,4-dideoxy-D-glucuronic acid (“ezoaminuroic acid”), and an
N-linked pseudopeptide (L-cystathionine).
Three ezomycins containing the L-cystathionine compo-
nent, A1, B1, and C1 (the anomer of B1 at C-1′), are active
against certain species of phytopathogenic fungi such as
Sclerotinia and Botritus, whereas those lacking this pseudo-
peptide (e. g., A2 and B2) are inactive. Some members (B,
C, and D series) bear a C-5 glycosylated pseudo-uracil rather
than the more usual N-1 linked pyrimidine nucleoside bases.
A number of synthetic routes to the ezoaminuroic acid
portion have appeared,4,5 and several groups have synthesized
octosyl nucleosides that resemble the ezomycin component.6,7
A method for glycosylating a model octose at C-6′ was
reported from our lab in 1994.5 In this paper we describe
the first synthesis of the ezomycin nucleoside disaccharide
1 (≡ 4-desamino-4-oxoezomycin A2).
Although we had previously developed a satisfactory route
to the ezoaminuroic acid donor 6,5 the requirement of excess
donor for the nucleoside glycosylation, and the difficulties
associated with large-scale preparation of the Cerny epoxide
precursor, prompted us to develop the shorter alternative
route shown in Scheme 1. Selective hydrolysis8 of 3-azido-
3-deoxy-1,2:5,6-di-O-isopropylidene-R-D-glucofuranose 2,9
(6) Kim, K. S.; Szarek, W. A. Can. J. Chem. 1981, 59, 878-887. Bovin,
N. V.; Zurabyan, S. E.; Khorlin, A. Y. Carbohydr. Res. 1981, 98, 25-35.
Hanessian, S.; Dixit, D.; Liak, T. Pure Appl. Chem. 1981, 53, 129-148.
Kim, K. S.; Szarek, W. A. Carbohydr. Res. 1982, 100, 169-176.
Danishefsky, S.; Hungate, R. J. Am. Chem. Soc. 1986, 108, 2486-2489.
Hanessian, S.; Kloss, J.; Sugawara, T. J. Am. Chem. Soc. 1986, 108, 2758-
2759. Sakanaka, O.; Ohmuri, T.; Kozaki, S.; Suami, S. Bull. Chem. Soc.
Jpn. 1987, 60, 1057-1062. Danishefsky, S. J.; Hungate, R.; Schulte, G. J.
Am. Chem. Soc. 1988, 110, 7434-7440. Maier, S.; Preuss, R.; Schmidt, R.
R. Liebigs Ann. Chem. 1990, 483-489. Haraguchi, K.; Hosoe, M.; Tanaka,
H.; Tsuruoka, S.; Kanmuri, K.; Miyasaka, T. Tetrahedron Lett. 1998, 39,
5517-5520. See also refs 1 and 5 and references therein.
(7) Knapp, S. Shieh, W.-C.; Jaramillo, C.; Trilles, R. V.; Nandan, S. R.
J. Org. Chem. 1994, 59, 946-948.
(8) Redlich, H.; Roy, W. Liebigs Ann. Chem. 1981, 1223-1233.
(9) Meyer zu Reckendorf, W. Chem. Ber. 1968, 101, 3802-3807.
Stevens, J. D. Methods Carbohydr. Chem. 1972, 6, 123.
(1) Recent reviews: Knapp, S. Chem. ReV. 1995, 95, 1859-1876. Isono,
K. Pharmacol. Ther. 1991, 52, 269-286.
(2) Isolation and biological activity: Sakata, K.; Sakurai, A.; Tamura,
S. Agric. Biol. Chem. 1974, 38, 1883-1890. Sakata, K.; Sakurai, A.;
Tamura, S. Agric. Biol. Chem. 1977, 41, 2027-2032 and references therein.
(3) Structures: Sakata, K.; Sakurai, A.; Tamura, S. Agric. Biol. Chem.
1975, 39, 885-892. Sakata, K.; Sakurai, A.; Tamura, S. Agric. Biol. Chem.
1977, 41, 2033-2039 and references therein.
(4) Mieczkowski, J.; Zamojski, A. Bull. Acad. Pol. Sci. 1975, 23, 581-
583. Ogawa, T.; Akatsu, M.; Matsui, M. Carbohydr. Res. 1975, 44, C22-
24. Knapp, S.; Levorse, A. T.; Potenza, J. A. J. Org. Chem. 1988, 53, 4773-
4779.
(5) Knapp, S.; Jaramillo, C.; Freeman, B. J. Org. Chem. 1994, 59, 4800-
4804.
10.1021/ol005696f CCC: $19.00 © 2000 American Chemical Society
Published on Web 04/18/2000