ORGANIC
LETTERS
2012
Vol. 14, No. 6
1568–1571
Copper-Free Asymmetric Allylic
Alkylation Using Grignard Reagents on
Bifunctional Allylic Bromides
David Grassi and Alexandre Alexakis*
Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet
CH-1211 Geneva 4, Switzerland
Received February 6, 2012
ABSTRACT
A series of substrates containing a vinylic bromide were employed in a copper-free methodology using bidendate NHC ligands. The desired
compounds are generally obtained with good enantioselectivity and good regioselectivity. Importantly the copper-catalyzed system afforded a
lower enantioselectivity value. The catalytic products could be transformed into a broad scope of new 1,1-disubstituted olefins in a single step
transformation without erosion of the enantioselectivity.
In the context of asymmetric allylic alkylation (AAA),1
the copper-catalyzed AAA turned out to be one of the
most attractive and efficient reactions in the enantioselec-
tive construction of CꢀC bonds. Several ligand families,
such as phosphoramidites, ferrocene-based ligands, pep-
tide-type ligands, or N-heterocyclic carbenes (NHC), were
used to coordinate copper. In addition toa broad substrate
scope, a large variety of organometallic reagents such as
organoaluminum, organozinc, and Grignard reagents
could be used. Among them, the Grignard reagents are
easily available nucleophiles and have been applied to a
wide range of prochiral substrates.2 More recently, they
have been extended to racemic chiral substrates in
DYKAT processes, providing highly enantioenriched
products.3 In most cases, the substrates do not bear other
functionalities, and the only handle for molecular complex-
ity lies on the further transformations of the resulting double
bond. Examples of functionalized substrates are scarce, with
mainly another functional group4 or an additional unsatu-
ration.5 A method that could be able to produce enantio-
merically enriched SN20 products, which could be potent
(4) (a) Mao, B.; Geurts, K.; Faranas-Mastral, M.; van Zijl, A. W.;
Fletcher, S. P.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2011, 13, 948–
951. (b) Selim, K. B.; Yamada, K.; Tomioka, K. Chem. Commun. 2008,
5140–5142. (c) van Zijl, A. W.; Szymanski, W.; Lopez, F.; Minnaard,
A. J.; Feringa, B. L. J. Org. Chem. 2008, 73, 6994–7002. (d) Gillingham,
D. G.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2007, 46, 3860–3864. (e)
Kacprzynski, M. A.; May, T. L.; Kazame, S. A.; Hoveyda, A. H. Angew.
Chem., Int. Ed. 2007, 46, 4554–4558. (f) van Zijl, A. W.; Lopez, F.;
Minnaard, A. J.; Feringa, B. L. J. Org. Chem. 2007, 72, 2558–2563. (g)
Okamoto, S.; Tominaga, S.; Saino, N.; Kase, K.; Shimoda, K.
J. Organomet. Chem. 2005, 690, 6001–6007. (h) Piarulli, U.; Daubos,
P.; Claverie, C.; Monti, C.; Gennari, C. Eur. J. Org. Chem. 2005, 895–
906. (i) den Hertog, T.; Macia, B.; Minnaard, A.; Feringa, B. L. Adv. Synth.
Catal. 2010, 352, 999–1013. (j) Falciola, C.; Alexakis, A. Angew. Chem., Int.
Ed. 2007, 46, 2619–2676. (k) Falciola, C.; Alexakis, A. Chem.;Eur. J. 2008,
14, 10615–10627. (l) Murphy, K. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2003,
125, 4690–4691.
(1) Transition Metal Catalyzed Enantioselective Allylic Substitution in
Organic Synthesis; Kazmaier, U., Ed.; Springer: Berlin/Heidelberg, 2012;
Topics in Organometallic Chemistry, Vol. 38.
(2) For reviews, see: (a) Alexakis, A.; Malan, C.; Lea, L.; Tissot-
Croset, K.; Polet, D.; Falciola, C. Chimia 2006, 60, 124–130. (b) Falciola,
C. A.; Alexakis, A. Eur. J. Org. Chem. 2008, 3765–3780. (c) Alexakis, A.;
€
ꢀ
ꢁ
Backvall, J. E.; Krause, N.; Pamies, O.; Dieguez, M. Chem. Rev. 2008,
108, 2796–2823. (d) Harutyunyan, S. R.; den Hartog, T.; Geurts, K.;
Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824–2852. (e)
Langlois, J.-B.; Alexakis, A., In Transition Metal Catalyzed Enantioselective
Allylic Substitution in Organic Synthesis; Kazmaier, U., Ed.; Springer:
Berlin/Heidelberg, 2012; Topics in Organometallic Chemistry, Vol. 38,
pp 235ꢀ268.
(3) (a) Langlois, J.-B.; Alexakis, A. Chem. Commun. 2009, 3868–
3870. (b) Langlois, J.-B.; Alexakis, A. Angew. Chem., Int. Ed. 2011, 50,
3868–3870. (c) Langlois, J.-B.; Emery, D.; Mareda, J.; Alexakis, A.
Chem. Sci. 201110.1039/C2SC00868H.
(5) (a) Giacomina, F.; Riat, D.; Alexakis, A. Org. Lett. 2010, 12,
1156–1159. (b) Teichert, J. F.; Zhang, S.; van Zijl, A. W.; Slaa, J. W.;
Minnaard, A. J.; Feringa, B. L. Org. Lett. 2010, 12, 4658–4660. (c) Li, H.;
Alexakis, A. Angew. Chem., Int. Ed. 2012, 51, 1055–1058.
r
10.1021/ol300299b
Published on Web 03/06/2012
2012 American Chemical Society