A R T I C L E S
Dang et al.
Chart 1. Known FBPase Inhibitors
that acts primarily by reducing endogenous glucose production
is metformin.5 Metformin lowers glucose in the absence of
weight gain and therefore is often used to treat T2DM despite
well-recognized safety concerns associated with its use in certain
diabetic patient populations and its overall high incidence of
gastrointestinal intolerance.6
In an effort to find more effective glucose-lowering drugs,
numerous investigators have evaluated various drug targets
within the liver for their potential to reduce endogenous glucose
production.7 Most of the work has focused on enzymes in the
gluconeogenesis (GNG) pathway,8 since this pathway is re-
sponsible for the excessive glucose production found in T2DM.9
Phosphoenolpyruvate carboxykinase (PEPCK)10 and glucose
6-phosphatase (G6Pase)11 were the primary targets in the 1970s
and 1980s. In contrast, we targeted fructose-1,6-bisphosphatase
(FBPase),12 an enzyme whose expression is regulated by the
hormones insulin and glucagon and whose activity is endog-
enously inhibited by fructose-2,6-bisphosphate and AMP through
their interactions with the substrate and allosteric binding sites,
respectively. FBPase is an attractive target not only because it
is a rate-controlling enzyme within the GNG pathway but also
because it functions only within the GNG pathway, unlike both
PEPCK and G6Pase.8c Moreover, adults who are genetically
deficient in FBPase activity exhibit relatively normal clinical
profiles provided they control their diet and avoid prolonged
fasting.13
mimic that could not be significantly improved through synthesis
of structural analogs. More recently, efforts were made to
identify lead compounds by screening large compound librar-
ies.16 Noncompetitive inhibitors binding at or near the AMP
site16a-c (e.g., 1) and uncompetitive inhibitors (e.g., 2) binding
at a site with unknown physiologic function near the subunit
interface16d-f were identified. All showed only modest inhibitory
potency with no reports of glucose lowering activity in animal
models.
Our strategy was to target the allosteric AMP binding site,
which is considerably less hydrophilic than the substrate binding
site and completely insensitive to inhibitor-induced FBPase
precursor buildup. As outlined in the previous report,17 AMP
binding sites are traditionally difficult drug targets due to their
high dependence on electrostatic binding interactions and their
common use by enzymes within important anabolic and
catabolic pathways. Using a structure-guided drug design
strategy, we identified a lead compound (3) and showed that it
is a potent and specific FBPase inhibitor capable of entering
rat hepatocytes.17
Herein, we describe our efforts to find an orally bioavailable
FBPase inhibitor that lowers glucose in diabetic animal models.
Since 3 exhibited poor oral activity and known phosphonate
prodrugs of 3 (e.g., 4) failed to achieve adequate oral bioavail-
ability, we re-examined the structure of the FBPase-3 complex
with the goal of identifying a new inhibitor series with properties
more likely to produce orally bioavailable compounds. This led
to compounds with reduced molecular weight, increased po-
tency, increased solubility, and decreased protein binding. These
findings coupled with the identification of a phosphonate
Previous attempts to discover inhibitors of FBPase failed to
identify suitable drug candidates (Chart 1). In the 1970s,
substrate analogs were evaluated and found to exhibit low
inhibitory activity.14 A nucleoside analog, 5-aminoimidazole-
4-carboxamide riboside, was shown in the 1990s to lower
glucose after conversion to the corresponding 5′-monophosphate
(ZMP) and binding to the allosteric AMP binding site.15 This
compound, however, proved to be a weak, nonspecific AMP
(5) (a) Stumvoll, M.; Nurjhan, N.; Perriello, G.; Dailey, G.; Gerich, J. E. N.
Engl. J. Med. 1995, 333, 550-554. (b) DeFronzo, R. A.; Goodman, A. M.
N. Engl. J. Med. 1995, 333, 541-549. (c) Hundal, R. S.; Krssak, M.;
Dufour, S.; Laurent, D.; Lebon, V.; Chandramouli, V.; Inzucchi, S. E.;
Schumann, W. C.; Petersen, K. F.; Landau, B. R.; Shulman, G. I. Diabetes
2000, 49, 2063-2069. (d) Natali, A.; Ferrannini, E. Diabetologia 2006,
49, 434-441.
(6) For reviews see: (a) Howlett, H. C.; Bailey, C. J. Drug Saf. 1999, 20,
489-503. (b) Dunn, C. J.; Peters, D. H. Drugs 1995, 49, 721-749.
(7) For reviews, see: (a) McCormack, J. G.; Westergaard, N.; Kristiansen,
M.; Brand, C. L.; Lau, J. Curr. Pharm. Des. 2001, 7, 1451-1474. (b) Barf,
T. Mini ReV. Med. Chem. 2004, 4, 897-908. (c) Kurukulasuriya, R.; Link,
J. T.; Madar, D. J.; Pei, Z.; Richards, S. J.; Rohde, J. J.; Souers, A. J.;
Szczepankiewicz, B. G. Curr. Med. Chem. 2003, 10, 123-153.
(8) For reviews on the gluconeogenesis pathway and its regulation, see: (a)
Pilkis, S. J.; Granner, D. K. Annu. ReV. Physiol. 1992, 54, 885-909. (b)
Granner, D.; Pilkis, S. J. Biol. Chem. 1990, 265, 10173-10176. (c) In
addition to their roles in GNG, PEPCK is also important for cellular energy
homeostasis and the red-ox state while G6Pase participates in the coversion
of hepatic glycogen to glucose.
(15) (a) Vincent, M. F.; Marangos, P. J.; Gruber, H. E.; Van den Berghe, G.
Diabetes 1991, 40, 1259-1266. (b) Vincent, M. F.; Erion, M. D.; Gruber,
H. E.; Van den Berghe, G. Diabetologia 1996, 39, 1148-1155.
(16) (a) Wright, S. W.; Carlo, A. A.; Danley, D. E.; Hageman, D. L.; Karam,
G. A.; Mansour, M. N.; McClure, L. D.; Pandit, J.; Schulte, G. K.;
Treadway, J. L.; Wang, I. K.; Bauer, P. H. Bioorg. Med. Chem. Lett. 2003,
13, 2055-2058. (b) von Geldern, T. W.; Lai, C.; Gum, R. J.; Daly, M.;
Sun, C.; Fry, E. H.; Abad-Zapatero, C. Bioorg. Med. Chem. Lett. 2006,
16, 1811-1815. (c) Lai, C.; Gum, R. J.; Daly, M.; Fry, E. H.; Hutchins,
C.; Abad-Zapatero, C.; von Geldern, T. W. Bioorg. Med. Chem. Lett. 2006,
16, 1807-1810. (d) Wright, S. W.; et al. J. Med. Chem. 2002, 45, 3865-
3877. (e) Wright, S. W.; Hageman, D. L.; McClure, L. D.; Carlo, A. A.;
Treadway, J. L.; Mathiowetz, A. M.; Withka, J. M.; Bauer, P. H. Bioorg.
Med. Chem. Lett. 2001, 11, 17-21. (f) Choe, J. Y.; Nelson, S. W.; Arienti,
K. L.; Axe, F. U.; Collins, T. L.; Jones, T. K.; Kimmich, R. D.; Newman,
M. J.; Norvell, K.; Ripka, W. C.; Romano, S. J.; Short, K. M.; Slee, D. H.;
Fromm, H. J.; Honzatko, R. B. J. Biol. Chem. 2003, 278, 51176-51183.
(17) Erion, M. D.; Dang, Q.; Reddy, M. R.; Kasibhatla, S. R.; Huang, J.;
Lipscomb, W. N.; van Poelje, P. D. J. Am. Chem. Soc. 2007, 129, 15480-
15490.
(9) (a) Magnusson, I.; Rothman, D. L.; Katz, L. D.; Shulman, R. G.; Shulman,
G. I. J. Clin. InVest. 1992, 90, 1323-1327. (b) Gastaldelli, A.; Baldi, S.;
Pettiti, M.; Toschi, E.; Camastra, S.; Natali, A.; Landau, B. R.; Ferrannini,
E. Diabetes 2000, 49, 1367-1373. (c) Wajngot, A.; Chandramouli, V.;
Schumann, W. C.; Ekberg, K.; Jones, P. K.; Efendic, S.; Landau, B. R.
Metabolism 2001, 50, 47-52.
(10) Newgard, C. B.; Moore, S. V.; Foster, D. W.; McGarry, J. D. J. Biol. Chem.
1984, 259, 6958-6963.
(11) Herling, A. W.; Burger, H. J.; Schwab, D.; Hemmerle, H.; Below, P.;
Schubert, G. Am. J. Physiol. 1998, 274 (6 Pt 1), G1087-G1093.
(12) Benkovic, S. J.; deMaine, M. M. AdV. Enzymol. Relat. Areas Mol. Biol.
1982, 53, 45-82.
(13) Gitzelmann, R.; Steinmann, B.; Van den Berghe, G. The Metabolic and
Molecular Basis of Inherited Disease; Scriver, C. R., Beaudet, A. L., Sly,
W. S., Valle, D., Eds.; McGraw Hill: New York, 1995; Vol. 1, pp 905-
934.
(14) Pilkis, S. J.; McGrane, M. M.; Kountz, P. D.; el-Maghrabi, M. R.; Pilkis,
J.; Maryanoff, B. E.; Reitz, A. B.; Benkovic, S. J. Biochem. Biophys. Res.
Commun. 1986, 138, 159-166.
9
15492 J. AM. CHEM. SOC. VOL. 129, NO. 50, 2007