M. Jose et al. / Spectrochimica Acta Part A 86 (2012) 495–499
499
4. Conclusions
[4] H.O. Marcy, M.J. Rosker, L.F. Warren, P.H. Cunningham, C.A. Thomas, L.A.
Deloach, S.P. Velsko, C.A. Ebbers, J.H. Liao, M.G. Kanatzidis, Opt. Lett. 20 (1995)
252.
Good optical quality single crystals of NPK·2H2O have been
grown by adjusting the growth parameters employing the tech-
nique of slow solvent evaporation from its aqueous solution. Single
crystal XRD analysis, FTIR and FT Raman spectroscopic studies
confirm the identity of the title material. High resolution XRD mea-
surements substantiate reasonably good quality of the grown single
crystal. Between 510 and 2000 nm, the material is observed to be
nearly transparent making the material suitable for non linear opti-
cal applications. The band gap of the material was found to be 5.1 eV
from UV absorption data. Although the investigation of the prop-
erties of NPK·2H2O is still in progress, NPK·2H2O crystal can be
expected to have potential applications in opto-electronic devices
in view of its excellent non linear figure of merit and strong PL
emission.
[5] X.J. Liu, Z.Y. Wang, D. Xu, X.Q. Wang, Y.Y. Song, W.T. Yu, W.F. Guo, J. Alloys
Compd. 441 (2007) 323.
[6] V. Venkataraman, G. Dhanraj, V.K. Wadhawan, J.N. Sherwood, H.L. Bhat, J. Cryst.
Growth 154 (1995) 92.
[7] H. Minemoto, Y. Ozaki, N. Sonoda, J. Appl. Phys. 76 (1994) 3975.
[8] B. Milton Boaz, A. Leyo Rajesh, S. Xavier Jesu Raja, S. Jerome Das, J. Cryst. Growth
262 (2004) 531.
[9] S. Dinakaran, S. Sunil Verma, Jerome Das, Cryst. Eng. Commun. 13 (2011) 2375.
[10] A. Jonie Varjula, A. Ramanand, S. Jerome Das, Mater. Res. Bull. 43 (2008) 431.
[11] S. Vanishri, S. Brahadeeswaran, H.L. Bhat, J. Cryst. Growth 275 (2005)
e141–e146.
[12] B. Milton Boaz, J. Mary Linet, M. Babu Varghese, S. Palanichamy, Jerome Das, J.
Cryst. Growth 280 (2005) 448.
[13] Y. Petit, P. Segonds, B. Boulanger, Opt. Mater. 30 (2007) 37.
[14] J.M. Eichenholz, D.A. Hammons, L. Shah, Q. Ye, R.E. Peale, M. Ridcharson, B.H.T.
Chai, Appl. Phys. Lett. 74 (1999) 1954.
[15] P. Segonds, B. Boulanger, B. Ménaert, J. Zaccaro, J.P. Salvestrini, M.D. Fontana, R.
Moncorgé, F. Porée, G. Gadret, J. Mangin, A. Brenier, G. Boulon, G. Aka, D. Pelenc,
Opt. Mater. 29 (2007) 975.
[16] D. Zhang, G. Lan, S. Hu, H. Wang, J. Zheng, J. Raman Spectrosc. 24 (1993) 753.
[17] M. Joyeux, G. Menard, N. Quy Dao, J. Raman Spectrosc. 19 (1988) 499.
[18] M. Ben Salah, P. Becker, C. Carabatos-Nedelec, Vib. Spectrosc. 26 (2001) 23.
[19] G. Krishan Lal, Bhagavannarayana, J. Appl. Cryst. 22 (1989) 209.
[20] G. Bhagavannarayana, R.V. Ananthamurthy, G.C. Budakoti, B. Kumar, K.S. Bart-
wal, J. Appl. Cryst. 38 (2005) 768.
[21] G. Bhagavannarayana, S.K. Kushwaha, J Appl. Cryst. 43 (2010) 154.
[22] W. Tam, B. Guerin, J.C. Calabrese, S.H. Stevenson, Chem. Phys. Lett. 154 (1989)
93.
Acknowledgements
One of the authors (M.J.) acknowledges the Government of Tamil
Nadu for partial financial assistance. The support rendered by Dr.
G. Bhagavannarayana, NPL, New Delhi towards HRXRD studies is
gratefully acknowledged.
[23] G. Ryu, C.S. Yoon, J. Cryst. Growth 191 (1998) 190.
[24] M. Jose, G. Bhagavannarayana, K. Sugandhi, S. Jerome Das, Mater. Lett. 64 (2010)
1369.
[25] R.R. Chang, R. Iyer, D.L. Lile, J. Appl. Phys. 61 (1987) 1995.
[26] J.X. Wang, S.S. Xie, H.J. Yuan, X.Q. Yan, D.F. Liu, Y. Gao, Z.P. Zhou, L. Song, L.F.
Liu, X.W. Zhao, X.Y. Dou, W.Y. Zhou, G. Wang, Solid State Commun. 131 (2004)
435.
References
[1] T.M. Kolev, D.Y. Yancheva, B.A. Stamboliyska, M.D. Dimitrov, R. Wortmann,
Chem. Phys. 348 (2008) 45.
[2] S. Gao, W. Chen, G. Wang, J. Chen, J. Cryst. Growth 297 (2006) 361.
[3] C. Zhang, Y.L. Song, X. Wang, Coordin. Chem. Rev. 251 (2007) 111.