J . Org. Chem. 2000, 65, 3767-3770
3767
Or ga n oyttr iu m -Ca ta lyzed Sequ en tia l Cycliza tion /Silyla tion
Rea ction s of Nitr ogen -Heter oa r om a tic Dien es Dem on str a tin g
“Ar yl-Dir ected ” Regioselectivity
Gary A. Molander*,†,‡ and Monika H. Schmitt‡
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania,
Philadelphia, Pennsylvania 19104-6323, and Department of Chemistry and Biochemistry,
University of Colorado, Boulder, Colorado 80309-0215
Received J anuary 13, 2000
The reaction of 1-allyl-2-vinyl-1H-pyrroles and 1-allyl-2-vinyl-1H-indoles with arylsilanes in the
presence of catalytic [CpTMS2Y(µ-Me)]2 leads to highly selective cyclization/silylation events. In this
process the active catalyst for the reaction, “CpTMS2YH”, undergoes initial olefin insertion at the
vinyl group. Even isopropenyl substituents on the heteroaromatics react in preference to less
sterically encumbered allyl groups. Furthermore, the observed regioselectivity reflects an “aryl-
directed” process, whereby the more highly substituted secondary or tertiary organometallic is
initially generated. This intermediate undergoes cyclization onto the remaining alkene and
subsequent silylation by a σ-bond metathesis reaction, affording the observed products.
Sch em e 1
The use of group 3 and lanthanide metallocenes as
catalysts for stereoselective cyclization/silylation reac-
tions of substituted 1,5- and 1,6-dienes to functionalized
carbocycles is by now well established.1 Previous inves-
tigations have demonstrated that, despite their recog-
nized Lewis acidity and the propensity to complex with
Lewis bases, these metallocenes can also be utilized for
the synthesis of nitrogen heterocycles either via cycliza-
tion/silylation1d,h or hydroamination protocols.2 Because
this class of catalysts is highly sensitive to steric encum-
brance about the alkene, and because steric factors
predominate in the insertion process,3 nearly all of the
research in this area has focused on monosubstituted
olefins. Disubstituted alkene systems cannot be accom-
modated by sterically crowded catalysts such as Cp*2-
YMe‚THF. This allows exquisite selectivity in compli-
cated, polyunsaturated substrates wherein less sterically
encumbered alkenes react in preference to their more
sterically shielded counterparts.1c
More open ligand arrays about the metal have been
enlisted to allow incorporation of 1,1-disubstituted
alkenes.1b In the current contribution we report the use
of one of this new generation of complexes, [CpTMS2Y(µ-
Me)]2,1c,4 in cyclization/silylation reactions of heteroaro-
matic dienes. This catalyst allows the extension of this
chemistry to 1,1-disubstituted olefins with “aryl-directed”
regioselectivity.
In previous studies on saturated nitrogen heterocycles,
the catalytic cycle depicted in Scheme 1 was estab-
lished.1d,h,5 The precatalyst reacts with the silane via a
σ-bond metathesis reaction6 to generate an organolan-
thanide hydride, the active catalyst for the process. The
hydride catalyst “(CpTMS)2YH”7 preferentially inserts the
least hindered olefin with the same regioselectivity as
hydroboration reactions,8 placing the bulky metal and
associated ligands at the terminus of the carbon chain.
† University of Pennsylvania.
‡ University of Colorado.
(1) (a) Molander, G. A. Chemtracts 1998, 11, 237 and references
therein. (b) Molander, G. A.; Dowdy, E. D.; Schumann, H. J . Org. Chem.
1998, 63, 3386. (c) Molander, G. A.; Nichols, P. J .; Noll, B. C. J . Org.
Chem. 1998, 63, 2292. (d) Molander, G. A.; Nichols, P. J . J . Org. Chem.
1996, 61, 6040. (e) Molander, G. A.; Nichols, P. J . J . Am. Chem. Soc.
1995, 117, 4415. (f) Onozawa, S.; Sakakura, T.; Tanaka, M. Tetrahe-
dron Lett. 1994, 35, 8177. (g) Molander, G. A.; Dowdy, E. D. In Topics
In Organometallic Chemistry; Kobayashi, S., Ed.; Springer-Verlag:
New York, 1999; Vol. 2, pp 120-154. (h) Molander, G. A.; Corrette, C.
P. J . Org. Chem. 1999, 64, 9697.
(2) (a) Gagne´, M. R.; Marks, T. J . J . Am. Chem. Soc. 1989, 111, 4108.
(b) Gagne´, M. R.; Nolan, S. P.; Marks, T. J . Organometallics 1990, 9,
1716. (c) Gagne´, M. R.; Stern, C. L.; Marks, T. J . J . Am. Chem. Soc.
1992, 114, 275. (d) Gagne´, M. R.; Brard, L.; Conticello, V. P.; Giardello,
M. A.; Stern, C. L.; Marks, T. J . Organometallics 1992, 11, 2003. (e)
Li, Y.; Fu, P.-F.; Marks, T. J . Organometallics 1994, 13, 439. (f) Li, Y.;
Marks, T. J . J . Am. Chem. Soc. 1996, 118, 707. (g) Li, Y.; Marks, T. J .
Organometallics 1996, 15, 3770. (h) Li, Y.; Marks, T. J . J . Am. Chem.
Soc. 1996, 118, 9295. (i) Giardello, M. A.; Conticello, V. P.; Brard, L.;
Gagne´, M. R.; Marks, T. J . J . Am. Chem. Soc. 1994, 116, 10241. (j)
Arredondo, V. M.; Tian, S.; McDonald, F. E.; Marks, T. J . J . Am. Chem.
Soc. 1999, 121, 3633. (k) Molander, G. A.; Dowdy, E. D. J . Org. Chem.
1999, 64, 6515. (l) Molander, G. A.; Dowdy, E. D. J . Org. Chem. 1998,
63, 8983.
(4) Schumann, H.; Keitsch, M. R.; Demtschuk, J .; Molander, G. A.
J . Organomet. Chem. 1999, 582, 70.
(5) Nichols, P. J . Ph.D. Thesis, University of Colorado at Boulder,
1997.
(3) Molander, G. A.; Knight, E. E. J . Org. Chem. 1998, 63, 7009.
10.1021/jo0000527 CCC: $19.00 © 2000 American Chemical Society
Published on Web 05/19/2000