6116
J. Am. Chem. Soc. 2000, 122, 6116-6117
Scheme 1
A Novel [5+2] Cycloaddition Reaction Using a
Dicobalt Acetylene Complex
Keiji Tanino,*,† Tadashi Shimizu,‡ Motoki Miyama,‡ and
Isao Kuwajima*,§
DiVision of Chemistry, Graduate School of Science
Hokkaido UniVersity, Sapporo 060-0810, Japan
Department of Chemistry
Tokyo Institute of Technology
Meguro, Tokyo 152-8551, Japan
Scheme 2
Laboratory for Natural Products Chemistry
Kitasato UniVersity, S-105 1-15-1
Kitasato, Sagamihara 228-8555, Japan
ReceiVed March 21, 2000
Cycloheptane derivatives are found in a wide range of natural
products,1 and various synthetic methods of these compounds have
been explored.2 From the viewpoint of efficiency, a cycloaddition
approach which produces two C-C bonds in one stage is
advantageous. In this regard, [4+3]-type annulation reactions of
dienes and allyl cationic species have been widely examined,3
while much less attention has been given to a [5+2] cycloaddition
approach.4-6
Scheme 3
In relation with the [3+2] cycloaddition reactions using a
3-(alkylthio)allyl cationic species as a three-carbon unit,7 we have
been interested in a [5+2] type cycloaddition reaction using a
vinylogue of the allyl cationic species. However, there are serious
problems in using a pentadienyl cation as a five-carbon unit, that
is, (1) the geometry of the pentadienyl cation should be controlled
as (Z) and (2) the pentadienyl cation with cis configuration would
undergo an intramolecular cyclization reaction to give a cyclo-
pentene derivative (Scheme 1).8 The most reasonable and practical
solution to these problems is the use of an oxidopyrylium as a
five-carbon unit,5 which was employed in total synthesis of some
natural products.9
of a “tandem cyclization-rearrangement strategy”.10 In this novel
transformation, use of a hexacarbonyldicobalt acetylene complex,
which has considerably large C(acetylenic)-C(acetylenic)-
C(propargylic) angles,11 was quite effective for selective cycliza-
tion to a seven-membered ring.12 These results led us to design a
new [5+2] cycloaddition reaction using a hexacarbonyldicobalt
propargyl cation13 as an equivalent of a pentadienyl cation
(Scheme 2).
The five-carbon unit was prepared from ester 114 as shown in
Scheme 3. Several enol triisopropylsilyl ethers15 were subjected
to the [5+2] cycloaddition reaction with 4, and the desired
On the other hand, we have reported a powerful methodology
for constructing a highly strained ingenane skeleton on the basis
† Hokkaido University.
‡ Tokyo Institute of Technology.
§ Kitasato University.
(1) (a) Heathcock, C. H.; Graham, S. L.; Pirrung, M. C.; Pavoac, F.; White,
C. T. In Total Synthesis of Natural Products; Apsimon, J., Ed.; John Wiley
and Sons: New York, 1983; Vol. 5, pp 333-393. (b) Fraga, B. M. Natural
Prod. Rep. 1996, 13, 307-326.
(2) For a review, see: Ho, T. L. Carbocycle Construction in Terpene
Synthesis; VCH Publishers: New York, 1988.
(3) For reviews of [4+3] cycloaddition reactions, see: (a) Hosomi, A.;
Tominaga, Y. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon: Oxford, 1991; Vol. 5, Chapter 5.1, pp 593-615. (b)
Hoffman, H. M. R. Angew. Chem., Int. Ed. Engl. 1984, 23, 1-19. (c) Mann,
J. Tetrahedron 1986, 42, 4611-4659. (d) Noyori, R.; Hayakawa, Y. Org.
React. 1983, 29, 163-344. (e) Harmata, M. Tetrahedron 1997, 53, 6235-
6280.
(4) For metal-catalized [5+2] cycloaddition reactions, see: (a) Wender,
P. A.; Takahashi, H.; Witulski, B. J. Am. Chem. Soc. 1995, 117, 4720-4721.
(b) Wender, P. A.; Glorius, F.; Husfeld, C. O.; Langkopf, E.; Love, J. A. J.
Am. Chem. Soc. 1999, 121, 5348-5349 and references therein.
(5) For oxidopyrylium cycloadditions, see: (a) Sammes, P. G. Gazz. Chim.
Ital. 1986, 116, 109-114. (b) West, F. In AdVances in Cycloaddition; Lautens,
M., Ed.; JAI Press: Greenwich, 1997; Vol. 4, pp 1-40. (c) Wender, P. A.;
Mascaren˜as, J. L. Tetrahedron Lett. 1997, 33, 2115-2118 and references
therein.
(9) For examples, see: (a) Wender, P. A.; Lee, H. Y.; Wilhelm, R. S.;
Williams, P. D. J. Am. Chem. Soc. 1989, 111, 8954-8957. (b) Wender, P.
A.; Kogen, H.; Lee, H. Y.; Munger, J. D., Jr.; Wilhelm, R. S.; Williams, P.
D. J. Am. Chem. Soc. 1989, 111, 8957-8958. (c) Wender, P. A.; Rice, K. D.;
Schnute, M. E. J. Am. Chem. Soc. 1997, 119, 7897-7898. (d) Wender, P. A.;
Jesudason, C. D.; Nakahira, H.; Tamura, N.; Tebbe, A. L.; Ueno, Y. J. Am.
Chem. Soc. 1997, 119, 12976-12977.
(10) Nakamura, T.; Matsui, T.; Tanino, K.; Kuwajima, I. J. Org. Chem.
1997, 62, 3032-3033.
(11) Cotton, F. A.; Jamerson, J. D.; Stults, B. R. J. Am. Chem. Soc. 1976,
98, 1774-1779.
(12) For selected examples of seven-membered dicobalt acetylene complexs,
see: (a) Schreiber, S. L.; Sammakia, T.; Crowe, W. E. J. Am. Chem. Soc.
1986, 108, 3128-3130. (b) Yenjai, C.; Isobe, M. Tetrahedron 1998, 54, 2509-
2520. (c) Brook, M. A.; Urschey, J.; Stradiotto, M. Organometallics 1998,
17, 5342-5346. (d) Patel, M. M.; Green, J. R. Chem. Commun. 1999, 509-
510. (e) Iwasawa, N.; Satoh, H. J. Am. Chem. Soc. 1999, 121, 7951-7952.
(13) For reviews of synthetic utility of cobalt-complexed propargyl cations,
see: (a) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207-214. (b) Caffyn, A.
J. M.; Nicholas, K. M. In ComprehensiVe Organometallic Chemistry II; Abel,
E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon Press: Oxford, 1995;
Vol. 12, pp 685-702.
(6) Stepwise cycloaddition reactions of “allylsilane-acetal bifunctional
reagents” with enol silyl ethers including [5+2]-type annulation were
reported: (a) Lee, T. V.; Boucher, R. J.; Rockell, C. J. M. Tetrahedron Lett.
1988, 29, 689-692. (b) Lee, T. V.; Boucher, R. J.; Porter, J. R.; Rockell, C.
J. M. Tetrahedron 1989, 45, 5887-5894. (c) Lee, T. V.; Cregg, C. Synlett
1990, 317-319.
(7) (a) Takahashi, Y.; Tanino, K.; Kuwajima, I. Tetrahedron Lett. 1996,
37, 5943-5946. (b) Masuya, K.; Domon, K.; Tanino, K.; Kuwajima, I. J.
Am. Chem. Soc. 1998, 120, 1724-1731. (c) Mizuno, H.; Domon, K.; Masuya,
K.; Tanino, K.; Kuwajima, I. J. Org. Chem. 1999, 64, 2648-2656 and
references therein.
(14) Earl, R. A.; Townsend, L. B. In Organic Synthesis; Freeman, J. P.,
Ed.; John Wiley and Sons: New York, 1990; Collect. Vol. VII, pp 334-338.
(15) The yield of the cycloadducts depends on the bulkiness of the silyl
group. For example, the reaction of 1-(trimethylsiloxy)cyclohexene afforded
the desired product in only 12% yield.
(8) Habermas, K. L.; Denmark, S. E. Org. React. 1994, 45, 1-158.
10.1021/ja001003e CCC: $19.00 © 2000 American Chemical Society
Published on Web 06/08/2000