RSC Advances
Paper
69.35, 69.42, 69.48, 69.62, 69.65 ppm. IR (cmꢁ1) 3432.2 (m),
2924.3 (m), 2878.0 (m), 1718.7 (w), 1635.1 (w), 1465.2 (m), 1355.0
(m), 1295.5 (m), 1216.6 (m), 1119.0 (vs.), 1040.0 (s), 947.8 (m),
839.1 (w), 733.4 (w), 601.7 (w), 526.4 (m). Elemental analysis
calcd for C19H40B2F8KNO8S (%): C 34.82, H 6.15, N 2.14; found:
C 34.52, H 6.38, N 2.01.
Acknowledgements
This work was nancially supported by the National Natural
Science Foundation of China (NSFC 21173106).
1-Butyl-1-aza-[18-C-6KSO3H][PF6]2. 1H NMR (300 MHz, D2O)
d ¼ 0.89 (t, J ¼ 7.2 Hz, 3H), 1.31 (m, 2H), 1.64 (m, 2H), 2.11 (m,
2H), 2.87 (m, 2H), 3.33–3.64 (m, 24H), 3.85 (m, 4H) ppm; 13C
NMR (100 MHz, D2O) d ¼ 12.63, 17.47, 18.86, 23.03, 47.10,
58.27, 59.07, 59.25, 59.68, 63.61, 63.70, 69.28, 69.32, 69.36,
69.38, 69.45, 69.48, 69.54, 69.68 ppm. IR (cmꢁ1) 3433.4 (m),
2921.7 (m), 2881.4 (m), 1717.3 (w), 1637.4 (w), 1469.2 (w), 1353.9
(w), 1248.2 (m), 1219.1 (m), 1114.2 (vs.), 1035.4 (s), 845.3 (m),
743.0 (m), 604.6 (w), 556.3 (w), 525.3 (w), 485.2 (m). Elemental
analysis calcd for C19H40F12KNO8P2S (%): C 29.57, H 5.23, N
1.82; found: C 29.32, H 5.41, N 1.57.
Notes and references
1 T. Welton, Chem. Rev., 1999, 99, 2071–2083.
2 J. Dupont, R. F. de Souza and P. A. Z. Suarez, Chem. Rev.,
2002, 102, 3667–3692.
3 W. S. Miao and T. H. Chan, Acc. Chem. Res., 2006, 39, 897–
908.
4 J. P. Hallett and T. Welton, Chem. Rev., 2011, 111, 3508–3576.
5 W. Wang, L. Shao, W. Cheng, J. Yang and M. He, Catal.
Commun., 2008, 9, 337–341.
6 H. B. Xing, T. Wang, Z. H. Zhou and Y. Y. Dai, Ind. Eng. Chem.
Res., 2005, 44, 4147–4150.
1-Butyl-1-aza-[18-C-6KSO3H][HSO4]2. 1H NMR (300 MHz,
D2O) d ¼ 0.92 (t, J ¼ 7.2 Hz, 3H), 1.35 (m, 2H), 1.67 (m, 2H), 2.15
7 A. Sarkar, S. R. Roy, N. Parikh and A. K. Chakraborti, J. Org.
Chem., 2011, 76, 7132–7140.
(m, 2H), 2.92 (m, 2H), 3.38–3.69 (m, 24H), 3.92 (m, 4H) ppm; 13
C
NMR (100 MHz, D2O) d ¼ 12.58, 17.29, 18.67, 22.85, 46.92,
57.51, 58.06, 59.06, 59.78, 63.22, 63.42, 68.76, 69.10, 69.13,
69.16, 69.24, 69.26, 69.39, 69.46 ppm. IR (cmꢁ1) 3438.8 (m),
2920.1 (m), 2877.5 (m), 1722.3 (w), 1637.8 (w), 1468.1 (m), 1352.4
8 A. Sarkar, S. R. Roy and A. K. Chakraborti, Chem. Commun.,
2011, 47, 4538–4540.
9 S. R. Roy and A. K. Chakraborti, Org. Lett., 2010, 12, 3866–
3869.
(m), 1235.0 (s), 1117.1 (vs.), 1031.0 (s), 950.0 (m), 882.8 (m), 10 A. K. Chakraborti and S. R. Roy, J. Am. Chem. Soc., 2009, 131,
852.0 (m), 732.1 (w), 583.0 (vs.), 523.8 (m). Elemental analysis
6902–6903.
calcd for C19H42KNO16S3 (%): C 33.77, H 6.26, N 2.07; found: C 11 A. K. Chakraborti, S. R. Roy, D. Kumar and P. Chopra, Green
33.41, H 6.44, N 1.92.
Chem., 2008, 10, 1111–1118.
1-Butyl-1-aza-[18-C-6KSO3H][TFA]2. 1H NMR (300 MHz, D2O) 12 A. C. Cole, J. L. Jensen, I. Ntai, K. L. T. Tran, K. J. Weaver,
d ¼ 0.91 (t, J ¼ 7.2 Hz, 3H), 1.34 (m, 2H), 1.66 (m, 2H), 2.14 (m,
D. C. Forbes and J. H. Davis Jr, J. Am. Chem. Soc., 2002,
124, 5962–5963.
2H), 2.91 (m, 2H), 3.36–3.67 (m, 24H), 3.90 (m, 4H) ppm; 13C
NMR (100 MHz, D2O) d ¼ 11.77, 16.53, 18.01, 22.20, 46.25, 13 X. Li and W. Eli, J. Mol. Catal. A: Chem., 2008, 279, 159–164.
57.38, 58.23, 58.36, 59.30, 62.58, 62.79, 68.42, 68.49, 68.53, 14 Q. W. Yang, Z. J. Wei, H. B. Xing and Q. L. Ren, Catal.
68.56, 68.60, 68.65, 68.82, 68.83, 115.25 (q, J ¼ 291.3 Hz), 161.57,
161.93 ppm. IR (cmꢁ1) 3482.2 (m), 2965.8 (m), 2879.4 (m), 15 J. H. Shen, H. Wang, H. C. Liu, Y. Sun and Z. M. Liu, J. Mol.
2529.6 (w), 2410.8 (w), 1958.1 (w), 1779.7 (m), 1745.3 (m), 1692.0
Catal. A: Chem., 2008, 280, 24–28.
(m), 1417.2 (w), 1419.5 (w), 1354.5 (w), 1298.7 (w), 1180.7 (s), 16 Y. Y. Song, H. W. Jing, B. Li and D. S. Bai, Chem.–Eur. J., 2011,
1129.3 (s), 1042.3 (s), 949.2 (m), 798.3 (m), 706.5 (m), 608.7 (w), 17, 8731–8738.
525.1 (w). Elemental analysis calcd for C23H40F6KNO12S (%): C 17 Y. Y. Song, Q. R. Jin, S. L. Zhang, H. W. Jing and Q. Q. Zhu,
Commun., 2008, 9, 1307–1311.
39.03, H 5.70, N 1.98; found: C 38.90, H 5.86, N 1.92.
Sci. China: Chem., 2011, 54, 1044–1050.
1-Butyl-1-aza-[18-C-6KSO3H]][X]2. MS (ESI) calcd. for [M ꢁ H]+ 18 L. F. Tietze and A. Modi, Med. Res. Rev., 2000, 20, 304–322.
480.2, found 480.4; calcd. for [M ꢁ K]+ 442. 2, found 442.5.
19 J. J. Peng and Y. Q. Deng, Tetrahedron Lett., 2001, 42, 5917–
5919.
20 M. Li, W. S. Guo, L. R. Wen, Y. F. Li and H. Z. Yang, J. Mol.
Catal. A: Chem., 2006, 258, 133–138.
Conclusions
In summary, we designed and synthesized ve new Brønsted 21 D. Fang, J. Luo, X. L. Zhou, Z. W. Ye and Z. L. Liu, J. Mol.
acidic ionic liquids of aza-crown ether complex cations, in Catal. A: Chem., 2007, 274, 208–211.
which, the cation bearing alkanesulfonic acid enables the 22 D. V. Jawale, U. R. Pratap, A. A. Mulay, J. R. Mali and
aCBAIL possessing Brønsted acidity. Containing both hydrogen R. A. Mane, J. Chem. Sci., 2011, 123, 645–655.
bond donors and acceptors, these new ILs can effectively 23 R. Kore and R. Srivastava, J. Mol. Catal. A: Chem., 2011, 345,
increase the electrophilicity of the aldehydes. Thus, the organic 117–126.
reactions, such as Biginelli reactions, Mannich reaction and 24 L. M. Wang, J. W. Han, J. Sheng, Z. Y. Fan and H. Tian, Chin.
synthesis of bis-(4-hydroxycoumarin-3-yl)methanes can be ach- J. Org. Chem., 2005, 25, 591–594.
ieved in good to excellent yields. To the best of our knowledge, it 25 T. P. Loh and S. L. Chen, Org. Lett., 2002, 4, 3647–3650.
is the rst report of synthesizing aCBAILs that can effectively 26 K. Manabe, Y. Mori and S. Kobayashi, Tetrahedron, 2001, 57,
catalyse different organic reactions. Further developments on
2537–2544.
their applications are underway in our laboratory.
27 R. O. Duthaler, Angew. Chem., Int. Ed., 2003, 42, 975–978.
34330 | RSC Adv., 2014, 4, 34325–34331
This journal is © The Royal Society of Chemistry 2014