J. Am. Chem. Soc. 2000, 122, 6807-6808
6807
cleavage of bond “b”. We thought that with such an organome-
tallic cleavage the desired product 6 could be preferred, since 6
would have a primary carbon-metal bond, rather than the less-
stable secondary carbon-metal bond of 5.
Enantiomerically Pure Cyclohexenones by
Fe-Mediated Carbonylation of Alkenyl
Cyclopropanes
Douglass F. Taber,* Kazuo Kanai, Qin Jiang, and Gina Bui1
Department of Chemistry and Biochemistry
UniVersity of Delaware, Newark, Delaware 19716
ReceiVed NoVember 29, 1999
We report a general method for the construction of 5-alkyl
cyclohexenones (e.g., 2) of high enantiomeric purity, by ultraviolet
irradiation of enantiomerically pure alkenyl cyclopropanes such
as 1 in the presence of Fe(CO)5.2 Given the many strategies for
the preparation of enantiomerically pure alkenyl cyclopropanes
that are available,3 this promises to be a versatile method for the
construction of cyclohexane derivatives.
Photochemically initated Fe(CO)5 carbonylation of alkenyl
cyclopropanes had been reported,2 but the regioselectivity of the
process had not been explored. The accepted mechanism (Scheme
1),2d however, presented exactly the choice we wanted to set up,
Scheme 1
Most ring-expanding reactions of vinyl cyclopropanes, as
exemplified by the thermal vinyl cyclopropane rearrangement,4
proceed with preferential cleavage of bond “a”, to give the more
stable diradical 3. Unfortunately, cleavage at “a” destroys the
stereogenic centers of the cyclopropane. If preferential cleavage
of bond “b” could be achieved, to give 4, one of the ring
stereogenic centers could be a spectator, and the enantiomeric
purity of the product could be maintained.
We envisioned that an organometallic cleavage, perhaps by
way of initial complexation with the alkene, could lead to either
metallacycle 5, by cleavage of bond “a”, or to metallacycle 6, by
that is, between metallacycle 9 and metallacycle 12. In fact, UV
irradiation with Fe(CO)5 in benzene converted the cyclopropane
1 predominantly to the desired 5-alkyl cyclohexenone 2, the
product from bond “b” cleavage.5,6 In practice, we have found it
convenient to add DBU after the irradiation, to convert the
intermediate products to their more stable conjugated isomers.
While the enone 14 was a minor product from the Fe-mediated
carbonylation of 1, the corresponding enone was the dominant
product from the Fe-mediated carbonylation of 18 (Table 1). We
concluded that 14 was formed by “Fe-H” isomerization of 2, and
thus we tried several different additives to suppress this unwanted
alkene migration. We eventually found that we could minimize
the formation of the isomerized byproduct by running the reaction
in 2-propanol.
* Corresponding author. Telephone: 302-831-2433. Fax: 302-831-6335.
E-mail: taberdf@udel.edu.
(1) Undergradutate research participant.
(2) (a) The photochemical Fe(CO)5-mediated carbonylation of vinyl cy-
clopropanes was first reported in 1970: Sarel, S. Acc. Chem. Res. 1978, 11,
204. For more recent references, see: (b) Khusnutdinov, R. I.; Dzhemilev,
U. M. J. Organomet. Chem. 1994, 471, 1. (c) Schulze, M. M.; Gockel, U.
Tetrahedron Lett. 1996, 37, 357. (d) Schulze, M. M.; Gockel, U. J. Organomet.
Chem. 1996, 525, 155.
(3) For an overview of strategies that could be used for the construction of
alkenyl cyclopropanes of high enantiomeric purity, see: (a) Davies, H. M.
L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J. J. Am. Chem. Soc.
1996, 118, 6897. For more recent examples, see: (b) Zhou, S.-M.; Deng,
M.-Z.; Xia, L.-J. Angew. Chem., Int. Ed. 1998, 37, 2845. (c) Lo, M. M.-C.;
Fu, G. C. J. Am. Chem. Soc. 1998, 120, 10270. (d) Charette, A. B.; Juteau,
H.; Lebel, H.; Molinaro, C. J. Am. Chem. Soc. 1998, 120, 11943. (e) Schwarz,
J. B.; Meyers, A. I. J. Org. Chem. 1998, 63, 1619. (f) Temme, O.; Taj, S.-A.;
Andersson, P. G. J. Org. Chem. 1998, 63, 6007. (g) Sakaguchi, K.; Mano,
H.; Ohfune, Y. Tetrahedron Lett. 1998, 39, 4311. (h) Yang, Z.; Lorenz, J. C.;
Shi, Y. Tetrahedron Lett. 1998, 39, 8621. (i) Fox, M. E.; Li, C.; Marino, J.
P., Jr.; Overman, L. E. J. Am. Chem. Soc. 1999, 121, 5467. (j) Dorizon, P.;
Su, G.; Ludvig, G.; Nikitina, L.; Paugam, R.; Ollivier, J.; Salaun, J. J. Org.
Chem. 1999, 64, 4712. (k) Davies, H. M. L.; Panaro, S. A. Tetrahedron Lett.
1999, 40, 5287. (l) Cai, L.; Mahmoud, H.; Han, Y. Tetrahedron: Asymmetry
1999, 10, 411.
(4) For preferential bond “a” opening of alkenyl cyclopropanes, see: (a)
Feldman, K. S.; Romanelli, A. L.; Ruckle, R. E., Jr.; Miller, R. F. J. Am.
Chem. Soc. 1988, 110, 3300. (b) Feldman, K. S.; Bervan, H. M.; Romanelli,
A. L.; Parvez, M. J. Org. Chem. 1993, 58, 6851. (c) Feldman, K. S.; Bervan,
H. M.; Weinreb, P. H. J. Am. Chem. Soc. 1993, 115, 11364. (d) Takeda, K.;
Sakurama, K.; Yoshii, E. Tetrahedron Lett. 1997, 38, 3257. (e) Pattenden,
G.; Wiedenau, P. Tetrahedron Lett. 1997, 38, 3647 and references therein.
(5) (a) For an overview of carbonylative diene and enyne cyclometalation,
see: Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic
Molecules, 2nd ed.; University Science Books: Sausalito, 1999. For other
recent references to carbonylative cyclometalation, see: (b) Taber, D. F.;
Wang, Y. J. Am. Chem. Soc. 1997, 119, 22. (c) Zhao, Z.; Ding, Y.; Zhao, G.
J. Org. Chem. 1998, 63, 9285. (d) Negishi, E.-I.; Montchamp, J.-L.; Anastasia,
L.; Elizarov, A.; Choueiry, D. Tetrahedron Lett. 1998, 39, 2503. (e) Shiu,
Y.-T.; Madhushaw, R. J.; Li, W.-T.; Lin, Y.-C.; Lee, G.-H.; Peng, S.-M.;
Liao, F.-L.; Wang, S.-L.; Liu, R.-S. J. Am. Chem. Soc. 1999, 121, 4066.
(6) Concurrently with our work, three other groups reported preferential
metal-mediated bond “b” opening of alkenyl cyclopropanes: (a) Murakami,
M.; Itami, K.; Ubukata, M.; Tsuji, I.; Ito, Y. J. Org. Chem. 1998, 63, 4. (b)
Wender, P. A.; Dyckman, A. J.; Husfield, C. O.; Kadereit, D.; Love, J. A.;
Rieck, H. J. Am. Chem. Soc. 1999, 121, 10442. (c) Trost, B. M.; Toste, F. D.;
Shen, H. J. Am. Chem. Soc. 2000, 122, 2379.
10.1021/ja994155m CCC: $19.00 © 2000 American Chemical Society
Published on Web 06/30/2000