Organic Letters
Letter
́
(10) Wang, Q.-Q.; Xu, K.; Jiang, Y.-Y.; Liu, Y.-G.; Sun, B.-G.; Zeng,
C.-C. Org. Lett. 2017, 19, 5517.
(11) (a) Zhang, X.-Y.; Weng, W.-Z.; Liang, H.; Yang, H.; Zhang, B.
Org. Lett. 2018, 20, 4686. (b) Guillemard, L.; Colobert, F.; Wencel-
Delord, J. Adv. Synth. Catal. 2018, 360, 4184.
(12) Silver-free examples using thermolysis exists, but the harsh,
elevated temperatures (100−110 °C) limit their applications to late-
stage functionalizations: Laha, J. K.; Patel, K. V.; Dubey, G.; Jethava,
K. P. Org. Biomol. Chem. 2017, 15, 2199.
(13) (a) Jatoi, A. H.; Pawar, G. G.; Robert, F.; Landais, Y. Chem.
Commun. 2019, 55, 466. (b) Jouffroy, M.; Kong, J. Chem. - Eur. J.
2019, 25, 2217.
(28) Sidorov, P.; Desta, I.; Chesse, M.; Horvath, D.; Marcou, G.;
Varnek, A.; Davioud-Charvet, E.; Elhabiri, M. ChemMedChem 2016,
11, 1339.
(29) (a) Alreja, P.; Kaur, N. RSC Adv. 2016, 6, 23169. (b) Ho, W.
C.; Chung, K.; Ingram, A. J.; Waymouth, R. M. J. Am. Chem. Soc.
2018, 140, 748. (c) Bencini, A.; Lippolis, V. Coord. Chem. Rev. 2010,
254, 2096. (d) Accorsi, G.; Listorti, A.; Yoosaf, K.; Armaroli, N. Chem.
Soc. Rev. 2009, 38, 1690.
(30) Feng, Y.; LoGrasso, P. V.; Defert, O.; Li, R. J. Med. Chem. 2016,
59, 2269.
(31) Knauf-Beiter, G.; Zeun, R. In Modern Crop Protection
Compounds, 2nd ed.; Kraemer, W., Ed.; Wiley-VCH Verlag GmbH
& Co. KGaA: Weinheim, Germany, 2012; Vol. 2, p 721.
(14) For alternative metal-mediated carbamoylations using hydra-
zinecarboxamides, see: He, Z.-Y.; Huang, C.-F.; Tian, S.-K. Org. Lett.
2017, 19, 4850.
(15) Sutherland, D. R.; Veguillas, M.; Oates, C. L.; Lee, A.-L. Org.
Lett. 2018, 20, 6863.
(16) (a) Kolthoff, I. M.; Meehan, E. J.; Carr, E. M. J. Am. Chem. Soc.
1953, 75, 1439. (b) Zil’berman, E. N.; Krasavina, N. B.; Navolokina,
R. A.; Kharitonova, O. A. Zh. Obshch. Khim. 1986, 56, 937.
(17) To investigate whether DMSO-based intermediates can be
formed under the reaction conditions, a solution of (NH4)2S2O8 in d6-
DMSO was stirred at 40 °C under N2. Comparison of the 1H NMR at
room temperature and after heating showed no new peaks, suggesting
that no intermediates detectable by NMR are formed in the reaction
mixture. See ref 15.
(18) Alder, C. M.; Hayler, J. D.; Henderson, R. K.; Redman, A. M.;
Shukla, L.; Shuster, L. E.; Sneddon, H. F. Green Chem. 2016, 18, 3879.
(19) Davies, M. J.; Gilbert, B. C.; Thomas, C. B.; Young, J. J. J.
Chem. Soc., Perkin Trans. 2 1985, 1199.
(20) In cases where the N-heterocycle is basic enough to
deprotonate 2 or 4, an alternative mechanism involving sulfate radical
anion mediated SET from the corresponding carboxylate, followed by
decarboxylation to form I is also possible. Nevertheless, successful
reactions with insufficiently basic substrates such as quinones and
caffeine implies that deprotonation of 2 or 4 is not strictly necessary.
(21) Aldehydes and formamides have also been used to generate the
acyl and carbamoyl radicals, respectively, although the conditions are
generally harsher due to the stronger C−H bond. For aldehyde
examples, see: (a) Siddaraju, Y.; Lamani, M.; Prabhu, K. R. J. Org.
Chem. 2014, 79, 3856. (b) Siddaraju, Y.; Prabhu, K. R. Tetrahedron
2016, 72, 959. (c) Cheng, P.; Qing, Z.; Liu, S.; Liu, W.; Xie, H.; Zeng,
J. Tetrahedron Lett. 2014, 55, 6647. (d) Chen, J.; Wan, M.; Hua, J.;
Sun, Y.; Lv, Z.; Li, W.; Liu, L. Org. Biomol. Chem. 2015, 13, 11561.
(e) Zhang, L.; Zhang, G.; Li, Y.; Wang, S.; Lei, A. Chem. Commun.
2018, 54, 5744. For formamide, a light-mediated example has been
reported but is limited to unsubstituted carbamoyls only and requires
more than 170 equiv excess of formamide (as solvent): (f) Zhang, Y.;
Teuscher, K. B.; Ji, H. Chem. Sci. 2016, 7, 2111. (g) Edwards, A. C.;
Geist, A.; Mullich, U.; Sharrad, C. A.; Pritchard, R. G.; Whitehead, R.
̈
C.; Harwood, L. M. Chem. Commun. 2017, 53, 8160.
(22) Use of α-keto acids and oxamic acids are thus more sustainable
than their activated ester counterparts as they release only traceless
CO2: (a) Raviola, C.; Protti, S.; Ravelli, D.; Fagnoni, M. Green Chem.
2019, 21, 748. (b) Fan, X.; Lei, T.; Chen, B.; Tung, C.-H.; Wu, L.-Z.
Org. Lett. 2019, 21, 4153. (c) Petersen, W. F.; Taylor, R. J. K.;
Donald, J. R. Org. Lett. 2017, 19, 874.
(23) For an excellent review on decarboxylative reactions, see:
̈
Schwarz, J.; Konig, B. Green Chem. 2018, 20, 323.
(24) The reaction of 1a and 2a is totally inhibited in the presence of
radical mechanistic pathway.
(25) Yields were generally better in wet versus anhydrous DMSO, so
water was added (600:1 DMSO/water) to allow for consistent yields.
(26) Beatty, J. W.; Stephenson, C. R. Acc. Chem. Res. 2015, 48, 1474.
(27) Jensen, C. M.; Lindsay, K. B.; Taaning, R. H.; Karaffa, J.;
Hansen, A. M.; Skrydstrup, T. J. Am. Chem. Soc. 2005, 127, 6544.
E
Org. Lett. XXXX, XXX, XXX−XXX