Communications to the Editor
J. Am. Chem. Soc., Vol. 122, No. 29, 2000 7151
Figure 2. The 1H NMR monitoring of reorganization process from 3‚5
to 4‚6 via guest exchange. (a) 3‚5 complex in D2O; (b-d) After the
addition of excess amount of 6 at 25 °C ((b) 3 h, (c) 8 h, (d) 24 h). Note
that free 5 is immiscible in water and, after guest exchange, becomes
invisible in the spectrum.
temperature for 3 days. As expected, the crystal structure of 4‚6
displayed the antiparallel junction of ligands. The whole tetra-
hedral structure is somewhat distorted in such a way that efficient
host-guest interaction and aromatic contact between the ligands
are gained. As a result, the 12-component assembly makes a
closed shell framework in which the guest molecule is completely
insulated (Figure 1, bottom).
In the absence of guests at 25 mM concentration, 1 and 2 were
assembled into a 3:2 mixture of two products, and the minor
product was identified as 3. The proportion of the major product
increased at lower concentrations, indicating that this product is
composed of fewer components than 3. Since its NMR is
qualitatively the same to that of 3, the major product was
tentatively assigned as an M6L3 trimeric open cone structure (7).11
Figure 1. Crystal structure of 4‚6. Top: ball and cylindrical representa-
tion; bottom: Space-filling representation.
X-ray crystallographic analysis (Figure 1).10 The single crystal
was obtained by standing the aqueous solution of 4‚6 at ambient
† The Graduate University for Advanced Studies.
‡ Chemical Analysis Center, Chiba University.
§ Department of Applied Chemistry, Graduate School of Engineering,
Nagoya University, and CREST, Japan Science and Technology Corporation.
(1) (a) Fujita, M.; Oguro, D.; Miyazawa, M.; Oka, H.; Yamaguchi, K.;
Ogura, K. Nature 1995, 278, 469-471. (b) Takeda, N.; Umemoto, K.;
Yamaguchi, K.; Fujita, M. Nature 1999, 398, 794. (c) Yu, S.-Y.; Kusukawa,
T.; Biradha, K.; Fujita, M. J. Am. Chem. Soc. 2000, 122, 2665-2666. (d)
Fujita, M. Chem. Soc. ReV. 1998, 27, 417-425.
(2) (a) Bru¨ckner, C.; Powers R. E.; Raymond, K. N. Angew. Chem., Int.
Ed. 1998, 37, 1837. (b) Johnson, D. W.; Xu, J.; Saalfrank, R. W.; Raymond,
K. N. Angew. Chem., Int. Ed. 1999, 38, 2882-2885. (c) Caulder, D. L.;
Raymond, K. N. Acc. Chem. Res. 1999, 32, 975.
(3) (a) Stang, P. J.; Olenyuk, B.; Muddiman, D. C.; Smith, R. D.
Organometallics 1997, 16, 3094. (b) Olenyuk, B.; Whiteford, J. A.; Fecht-
enko¨tter, A.; Stang, P. J. Nature 1999 398, 796-799. (c) Stang, P. J.; Olenyuk,
B. Acc. Chem. Res. 1997, 30, 502. (d) Leininger, S.; Olenyuk, B.; Stang, P.
J. Chem. ReV. 2000, 100, 853-908.
Being generated under thermodynamic control, three complexes
3, 4, and 7 are interconvertable with each other by guest addition
or exchange via remarkably effective reorganization processes.
Trimeric cone 7 (in the mixture of 3 and 7) was converted upon
the addition guest such as 5 to tetrameric cone 3 within 24 h.
The addition of 6 to the mixture of 3 and 7 resulted in the
disappearance of both complexes and reorganization into 4‚6
complex within a day. Once assembled open cone 3‚5 was
transformed into 4‚6 complex upon the addition of excess amount
of 6 within 24 h (Figure 2) via guest exchange.
(4) (a) Hartshorn, C. M.; Steel, P. J. J. Chem. Soc., Chem. Commun. 1997,
541. (b) Abrahams, B. F.; Egan, S. J.; Robson, R. J. Am. Chem. Soc. 1999,
121, 3535.
(5) Guest-controlled interconversion of helical and tetrahedral coordination
assemblies: Scherer, M.; Caulder, D. L.; Johnson, D. J.; Raymond, K. N.
Angew. Chem., Int. Ed. 1999, 38, 1588-1592.
(6) Dynamic libraries: (a) Hasenknopf, B.; Lehn, J.-M.; Baum G.; Fenske,
D. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 1397. (b) Hasenknopf, B.; Lehn,
J.-M.; Baum, G.; Kneisel, B. O.; Fenske, D. Angew. Chem., Int. Ed. Engl.
1996, 35, 1838. (c) Hasenknopf, B.; Lehn, J.-M.; Boumediene, N.; Dupont-
Gervais, A.; Dorsserlaer, A. V.; Kneisel, B.; Fenske, D. J. Am. Chem. Soc.
1997, 119, 10956. (d) Lehn, J.-M. Chem. Eur. J. 1999, 5, 2455. (e) Rowan,
S. J.; Sanders, J. K. M. J. Chem. Soc., Perkin Trans. 1 1997, 1407. (f) Brady,
P. A.; Sanders, J. K. M. J. Chem. Soc., Perkin Trans. 1 1997, 3237. (g) Calama,
M. C.; Timmerman, P.; Reinhoudt, D. N. Angew. Chem., Int. Ed. 2000, 39,
755. (h) Prins, L. J.; Jolliffe, K. A.; Hulst, R.; Timmerman, P.; Reinhoudt, D.
N. J. Am. Chem. Soc. 2000, 122, 3617. (i) Rivera, J. M.; Martin, T.; Rebek,
J., Jr. Science 1998, 279, 1021. (j) Rivera, J. M.; Martin, T.; Rebek, J., Jr. J.
Am. Chem. Soc. 1998, 120, 819. (k) Hof, F.; Nuckolls, C.; Rebek, J., Jr. J.
Am. Chem. Soc. 2000, 122, 4251.
Acknowledgment. We thank Dr. Kumar Biradha and Mr. Shigeru
Sakamoto for X-ray crystallographic analysis and ESI-MS measurement,
respectively.
Supporting Information Available: Preparation and physical proper-
ties of 1, 3‚5 and 4‚6, NMR spectra of 3‚5, 4‚6 complexes (1H, 13C, HH
COSY, NOESY, and CH COSY), and the mixture of complexes 3 and 7
(1H and HH COSY); detailed crystallographic data of 4‚6 complex (PDF).
acs. org.
(7) Guest-controlled assembly of coordination cages: (a) Fujita. M.; Nagao,
S.; Ogura, K. J. Am. Chem. Soc. 1995, 117, 1649. (b) Hasenknopf, B.; Lehn,
J.-M.; Boumediene, N.; Dupont-Gervain, A.; Dorsselaer, A. V.; Keneisei, B.;
Fenske, D. J. Am. Chem. Soc. 1997, 119, 10956. (c) Lee, S. B.; Hwang, S.;
Chung, D. S.; Yun, H.; Hong, J.-I. Tetrahedron Lett. 1998, 39, 873. (d)
Hiraoka, S.; Fujita, M. J. Am. Chem. Soc. 1999, 121, 10239.
(8) Observation of [M‚(G)m‚(X)n]n+ peaks (G: guest or solvent, X:
counterion) is characteristics for the ESI-MS of a series of (en)Pd-linked metal
complexes. Sakamoto, S.; Fujita, M.; Kim, K.; Yamaguchi, K. Tetrahedron
2000, 56, 955.
JA001411I
(10) Crystal data of 4‚6: see Supporting Information.
(11) The equilibration 3‚3 / 4‚7 shifts toward 7 at low concentrations.
NMR data of 3 and 7 (from the mixture of 3 and 7): see Supporting
Information.
(9) Satisfactory NMR, ESI-MS, and elemental analysis data were obtained.
See Supporting Information.