I. Gautier-Lefebvre et al. / Bioorg. Med. Chem. Lett. 10 (2000) 1483±1486
1485
to the protected bisubstrate analogue 12a in a 50% overall
yield from 4a. Hydrogenolysis of the O-benzyl protecting
groups was fairly dicult, and their removal was best
achieved by Pd(0)-catalysed transfer hydrogenation
aording the hydrosoluble compound 13a.13
Survey 1988, 7, 573. Springer, T. A.; Lasky, L. A. Nature 1991,
349, 193. Osborn, L. Cell 1990, 62, 3. Olden, K.; Breton, P.;
Grzegorzewski, K.; Yasuda, Y.; Gause, B. L.; Oredipe, O. A.;
Newton, S. A.; White, S. L. Pharmacol. Ther. 1991, 50, 285;
Goss, P. E.; Baptiste, J.; Fernandes, B.; Baker, M.; Dennis, J.
W. Cancer Res. 1994, 54, 1450.
3. (a) Sinnott, M. L. J. Chem. Rev. 1990, 90, 1171 and ref
therein. (b) Timmers, C. M.; Dekker, M.; Buijsman, R. C.;
Van der Marel, G. A.; Ethell, B.; Anderson, G.; Burchell, B.;
Mulder, G. J.; Van Boom, J. H. Bioorg. Med. Chem. Lett.
1997, 7, 1501. (c) Palcic, M. M.; Heerse, L. D.; Srivastava, O.
P.; Hindsgaul, O. J. Biol. Chem. 1989, 264, 17174. (d) Noort,
D.; Van der Marel, G. A.; Van der Gen, A.; Mulder, G. J.;
Van Boom, J. H. Red. Trav. Chim. Pays-Bas 1991, 110, 53 and
ref therein.
4. (a) Wischnat, R.; Martin, R.; Wong, C. H. J. Org. Chem.
1998, 63, 8361. (b) Takaoka, Y.; Kajimoto, T.; Wong, C. H. J.
Org. Chem. 1993, 58, 4809. (c) Palcic, M. M.; Ripka, J.; Kaur,
K. J.; Shoreibah, M.; Hindsgaul, O.; Pierce, M. J. Biol. Chem.
1990, 265, 6759. (d) Khan, S. H.; Crawley, S. C.; Kane, O.;
Hindsgaul, O. J. Biol. Chem. 1993, 268, 2468.
5. Hashimoto, H.; Endo, T.; Kajihara, Y. J. Org. Chem. 1997,
62, 1914.
6. Field, R. A.; Neville, D. C. A.; Smith, R. W.; Ferguson, M.
Bioorg. Med. Chem. Lett. 1994, 4, 391.
7. Behr, J.-B.; Mvondo Evina, C.; Phung, N.; Guillerm, G. J.
Chem. Soc. Perkin Trans. 1 1997, 1599.
8. N-Allyl glycosylamines are easily hydrolized back to the
parent sugar (Spevak, W.; Dasgupta, F.; Hobbs, C. J.; Nagy,
J. O. J. Org. Chem. 1996, 61, 3417) so that 2a,b could not be
puri®ed and were reacted as crude material.
This synthetic route has been applied to ꢁ-4b and ꢀ-
4a,b isomers to reach the corresponding bisubstrate
analogues.
Biological Evaluation
Antifungal assays: as 13a can be considered as a valuable
model of bisubstrate analogue inhibitor for chitin synthe-
tase (an important target for antifungal agents)14 its
activity was tested on a panel of several pathogenic fungi15
(Cryptococcus neoformans, Trichophyton mentagrophytes,
Microsporum canis, Aspergillus fumigatus, Candida albi-
cans, Saccharomyces cerevisiae). Compound 13a showed
no activity up to the maximum tested concentration of
128 mg/mL, whereas the standard compound terbina®ne
showed the normal activity expected.17 To explain this
lack of cellular activity it may be advanced that 13a does
not penetrate the fungal cell envelope. In order to check
this hypothesis, we evaluated the enzymatic inhibitory
potency of 13a on the activity of chitin synthetase from
Saccharomyces cerevisiae.
9. Barker, R.; Fletcher, H. G. J. Org. Chem. 1961, 26, 4605.
10. Lay, L.; Nicotra, F.; Paganini, A.; Pangrazio, C.; Panza,
L. Tetrahedron Lett. 1993, 34, 4555.
11. Santoyo-Gonzalez, F.; Uriel, C.; Calvo-Asin, J. A. Synth-
esis 1998, 1787.
12. Zhong, Y.-L.; Shing, T.K.M. J. Org. Chem. 1997, 62,
2622.
13. 1H NMR (D2O, 500 MHz, d ppm, J Hz) 4.62 (d, 1H, J1,2
For the inhibition studies, enzymatic assays were per-
formed using Saccharomyces cerevisiae cells permeabilized
with toluene±ethanol according to the procedure descri-
bed by Masson et al.18 The activation of enzyme present
as zymogen was performed essentially as described by
Cabib.19 Chitin synthetase was assayed by measuring the
rate of formation of (14C)-chitin from [UDP14C]-GlcNAc
according to the general method reported previously.20
0
0
0
0
3.5, H-1); 4.24 (m, 4H, 2CH2CH3); 4.17 (dd, 1H, J3 ,4 7.0, J3 ,2
0
6.0, H-30); 4.08 (dd, 1H, J4 ,3 =J4 ,5 7.0, H-40); 3.79 (dd, 1H,
J2,3 10.4, H-2); 3.73 (dd, 1H, J6a,6b 12.1, J6a,5 2.4, H-6a); 3.66±
3.55 (m, 4H, H-6b, H-5, H-3, H-60a); 3.36 (dd, 1H, J6 a,6 b 11.4,
0
0
0
Using our enzymatic preparation, Km value for UDP-N-
acetylglucosamine was 0.78 mM. Nikkomycin Z, used as
reference in our inhibition studies, strongly inhibited
chitin synthetase preparation (Ki=0.6 mM), whereas 13a,
tested in the same conditions, and for concentrations up
to 500 mM did not inhibit chitin synthetase activity.
0
0
J6 b,5 7.5, H-60b); 3.28±3.19 (m, 4H, H-20, CH3O); 3.02 (m,
1H, H-50); 2.90 (m, 1H, N-CH2-); 2.78±2.65 (m, 3H, N-CH2);
2.55 (bt, 1H, J4,5=J4,3 10.0, H-4); 1.9 (s, 3H, C(O)CH3); 1.26
(t, 6H, J 7.1, 2CH3CH2). 13C NMR (D2O, 125 MHz) 174.4
0
0
1
(CO); 122.2 (dt, JC-F=262, JC-P=210, CF2); 98.0 (C-1);
75.1 (C-40); 75.0 (C-30); 70.5 (C-20); 70.3 (C-5); 66.4 (m,
CH2CH3); 65.3 (C-50); 65.2 (C-3); 61.0 and 60.6 (C-60, C-6);
59.6 (C-4); 56.3 (N-CH2); 55.0 (CH3O); 54.1 (C-2); 45.5 (N-
CH2); 21.7 (COCH3); 15.6 (m, CH2CH3). 19F NMR (D2O, 235
Acknowledgements
1
2
3
MHz) 111.9 ppm (ddd, 1F, JFa,Fb 309, JF,P 110, JF,H 7);
1
114.8 ppm (ddd, 1F, JFa,Fb 309, JF,P 109, JF,H 21). 31P
NMR (D2O 101 MHz) 10.4 ppm (t).
2
3
The authors would like to thank Europol'Agro and the
`Conseil General de la Marne' for a PhD grant to one of
us (I. G.-L.).
14. Cabib, E.; Shaw, J.A.; Mol, P.C.; Bowers, B.; Choi, W.-J.
in Biochemistry and Molecular Biology; Springer Verlag, Ed.;
1996, pp 243.
15. MIC's were determined in broth macrodilution assays
according to guidelines of the NCCLS M27-A protocol,16 with
slight modi®cations.17 Inocula for assays were prepared from
stocks frozen at 80 ꢀC by dilution in growth medium to give
a ®nal viable cell count of 2.5Â103 CFU/mL. Each assay was
performed with a duplicate series of drug dilutions. In brief,
the assays were done in RPMI 1640 medium buered to pH
7.0 with MOPS buer, incubated at 35 ꢀC for 48 h. C. neofor-
mans and A. fumigatus were tested in the same assay, except
that incubations were for 72 h. The dermatophytes T. menta-
grophytes and M. canis were incubated at 30 ꢀC for 7 days.
References and Notes
1. (a) Stutz, A.E. Angew Chem., Int. Ed. Engl. 1996, 35, 1926.
(b) Dwek, R. A. Chem. Rev. 1996, 96, 683. (c) Smith, C. A.;
Davis, T.; Anderson, D.; Solam, L.; Beekman, M. P.; Jerzy,
R.; Tersu, R.; Dower, D. K.; Cosman, D.; Goodwin, R. G.
Science 1990, 248, 1019. (d) Warki, A. Glycobiology 1993, 3,
97. (e) Isono, K.; Suzuki, S. Heterocycles 1979, 13, 333.
2. Dennis, K. W.; Laferte, S.; Waghorne, C.; Breitman, M. L.;
Kerbel, R. S. Science 1987, 236, 582. Dennis, J. W. Cancer