Organic Letters
Letter
A.; Nishikata, T.; Hagiwara, N.; Kawata, K.; Okeda, T.; Wang, H. F.;
Fugami, K.; Kosugi, M. Org. Lett. 2001, 3, 3313−3316.
REFERENCES
■
(1) For typical reviews on fulvenes, see: (a) Hopf, H. In Cross
Conjugation: Modern Dendralene, Radialene and Fulvene Chemistry;
Hopf, H., Sherburn, M. S., Eds.; Wiley: New York, 2016; pp 1−440.
(b) Finke, A. D.; Diederich, F. Chem. Rec. 2015, 15, 19−30.
(c) Neuenschwander, M. Helv. Chim. Acta 2015, 98, 731−762.
(d) Neuenschwander, M. Helv. Chim. Acta 2015, 98, 763−784.
(2) For a recent review on pentafulvenes, see: (a) Preethalayam, P.;
Krishnan, K. S.; Thulasi, S.; Chand, S. S.; Joseph, J.; Nair, V.;
Jaroschik, F.; Radhakrishnan, K. V. Chem. Rev. 2017, 117, 3930−
3989. For the substitution effects on the aromatic character of
(13) For other typical examples of transition-metal-catalyzed fulvene
syntheses, see: (a) Uemura, M.; Takayama, Y.; Sato, F. Org. Lett.
2004, 6, 5001−5004. (b) Brahim, M.; Ammar, H. B.; Dorcet, V.;
́
Soule, J.-F.; Doucet, H. Org. Lett. 2017, 19, 2584−2587. (c) Chen, Y.;
Liu, Y. J. Org. Chem. 2011, 76, 5274−5282.
(14) For selected examples of non-transition-metal mediated fulvene
syntheses, see: (a) Himeda, Y.; Yamataka, H.; Ueda, I.; Hatanaka, M.
J. Org. Chem. 1997, 62, 6529−6538. (b) Sinu, C. R.; Suresh, E.; Nair,
V. Org. Lett. 2013, 15, 6230−6233. (c) Xie, J.-W.; Xu, M.-L.; Zhang,
R.-Z.; Pan, J.-Y.; Zhu, W.-D. Adv. Synth. Catal. 2014, 356, 395−400.
(15) For a recent review on the decarboxylation reactions of alkenyl
acids, see: Kaur, P.; Kumar, V.; Kumar, R. Catal. Rev.: Sci. Eng. 2020,
62, 118−161.
́
pentafulvenes, see: (b) Krygowski, T. M.; Cyranski, M. K. Chem. Rev.
2001, 101, 1385−1419.
(3) For a review on bioactivity of pentafulvenes, see: (a) Strohfeldt,
K.; Tacke, M. Chem. Soc. Rev. 2008, 37, 1174−1187. For typical
examples, see: (b) MacDonald, J. R.; Muscoplat, C. C.; Dexter, D. L.;
Mangold, G. L.; Chen, S.-F.; Kelner, M. J.; McMorris, T. C.; Von
Hoff, D. D. Cancer Res. 1997, 57, 279−283. (c) Wang, Y.; Wiltshire,
T.; Senft, J.; Reed, E.; Wang, W. Biochem. Pharmacol. 2007, 73, 469−
480.
(16) For selected reviews, see: (a) Goel, A.; Ram, V. J. Tetrahedron
2009, 65, 7865−7913. (b) Pal, S.; Chatare, V.; Pal, M. Curr. Org.
Chem. 2011, 15, 782−800.
(17) For Pd(II)-catalysis, see: (a) Yu, Y.; Huang, L.; Wu, W.; Jiang,
H. Org. Lett. 2014, 16, 2146−2149. For Rh(III)-catalysis, see:
(b) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009,
74, 6295−6298. (c) Itoh, M.; Shimizu, M.; Hirano, K.; Satoh, T.;
Miura, M. J. Org. Chem. 2013, 78, 11427−11432. (d) Kudo, E.;
Shibata, Y.; Yamazaki, M.; Masutomi, K.; Miyauchi, Y.; Fukui, M.;
Sugiyama, H.; Uekusa, H.; Satoh, T.; Miura, M.; Tanaka, K. Chem. -
Eur. J. 2016, 22, 14190−14194. (e) Li, Y.-T.; Zhu, Y.; Tu, G.-L.;
Zhang, J.-Y.; Zhao, Y.-S. Chem. - Asian J. 2018, 13, 3281−3284. For
Ru(II)-catalysis, see: (f) Prakash, R.; Shekarrao, K.; Gogoi, S. Org.
Lett. 2015, 17, 5264−5267.
(4) For recent reviews on organometallic applications of
pentafulvenes, see: (a) Erker, G. Coord. Chem. Rev. 2006, 250,
1056−1070. (b) Gleiter, R.; Bleiholder, C.; Rominger, F. Organo-
metallics 2007, 26, 4850−4859. For recent examples, see: (c) Bader,
M.; Marquet, N.; Kirillov, E.; Roisnel, T.; Razavi, A.; Lhost, O.;
Carpentier, J.-F. Organometallics 2012, 31, 8375−8387. (d) Oswald,
T.; Gelert, T.; Lasar, C.; Schmidtmann, M.; Kluener, T.; Beckhaus, R.
Angew. Chem., Int. Ed. 2017, 56, 12297−12301.
(5) For examples on semiconductor applications of pentafulvenes,
see: (a) Aqad, E.; Leriche, P.; Mabon, G.; Gorgues, A.;
Khodorkovsky, V. Org. Lett. 2001, 3, 2329−2332. (b) Andrew, T.
L.; Cox, J. R.; Swager, T. M. Org. Lett. 2010, 12, 5302−5305.
(6) For a review on solar cell applications of pentafulvenes, see:
(a) An, Q.; Zhang, F.; Zhang, J.; Tang, W.; Deng, Z.; Hu, B. Energy
Environ. Sci. 2016, 9, 281−322. For an example, see: (b) Godman, N.
P.; Balaich, G. J.; Iacono, S. T. Chem. Commun. 2016, 52, 5242−5245.
(7) For typical examples, see: (a) Stone, K. J.; Little, R. D. J. Org.
(18) (a) Wang, L.; Peng, S.; Wang, J. Chem. Commun. 2011, 47,
5422−5424. (b) Wang, L.; Huang, J.; Peng, S.; Liu, H.; Jiang, X.;
Wang, J. Angew. Chem., Int. Ed. 2013, 52, 1768−1772. (c) Peng, S.;
Wang, L.; Wang, J. Chem. - Eur. J. 2013, 19, 13322−13327. (d) Peng,
S.; Wang, L.; Huang, J.; Sun, S.; Guo, H.; Wang, J. Adv. Synth. Catal.
2013, 355, 2550−2557. (e) Peng, S.; Gao, T.; Sun, S.; Peng, Y.; Wu,
M.; Guo, H.; Wang, J. Adv. Synth. Catal. 2014, 356, 319−324.
(f) Wang, L.; Du, Z.; Peng, S.; Zhang, K.; Wang, J. Adv. Synth. Catal.
2014, 356, 2943−2947. (g) Wang, L.; Zhang, J.; Lang, M.; Wang, J.
Org. Chem. Front. 2016, 3, 603−608. (h) Peng, S.; Sun, Z.; Zhu, H.;
Chen, N.; Sun, X.; Gong, X.; Wang, J.; Wang, L. Org. Lett. 2020, 22,
3200−3204.
(19) For the importance of DMSO in the Pd(II)-catalyzed oxidative
decarboxylation process, see: (a) Myers, A. G.; Tanaka, D.; Mannion,
M. R. J. Am. Chem. Soc. 2002, 124, 11250−11251. (b) Tanaka, D.;
Myers, A. G. Org. Lett. 2004, 6, 433−436. (c) Tanaka, D.; Romeril, S.
P.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 10323−10333.
(d) Wang, C.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 4194−
4195.
̈
Chem. 1984, 49, 1849−1853. (b) Erden, I.; Gartner, C. Tetrahedron
Lett. 2009, 50, 2381−2383. (c) Coskun, N.; Erden, I. Tetrahedron
̧
2011, 67, 8607−8614. (d) Peloquin, A. J.; Stone, R. L.; Avila, S. E.;
Rudico, E. R.; Horn, C. B.; Gardner, K. A.; Ball, D. W.; Johnson, J. E.
B.; Iacono, S. T.; Balaich, G. J. J. Org. Chem. 2012, 77, 6371−6376.
(8) For a Ti(IV)-catalyzed [2 + 2 + 1] homo-cyclotrimerization of
alkynes, see: Johnson, E. S.; Balaich, G. J.; Fanwick, P. E.; Rothwell, I.
P. J. Am. Chem. Soc. 1997, 119, 11086−11087.
(9) For a Pd(0)-catalyzed [2 + 2 + 1] homo-cyclotrimerization of
alkynes, see: Radhakrishnan, U.; Gevorgyan, V.; Yamamoto, Y.
Tetrahedron Lett. 2000, 41, 1971−1974.
(10) For a Rh(I)-catalyzed [2 + 2 + 1] cross-cyclotrimerization of
alkynes, see: (a) Shibata, Y.; Tanaka, K. Angew. Chem., Int. Ed. 2011,
50, 10917−10921. For a similar version of alkenes with alkynes, see:
(b) Yoshizaki, S.; Shibata, Y.; Tanaka, K. Angew. Chem., Int. Ed. 2017,
56, 3590−3593.
(20) For Ag(I)-catalyzed intermolecular addition of carboxylic acids
to alkynes, see: (a) Ishino, Y.; Nishiguchi, I.; Nakao, S.; Hirashima, T.
Chem. Lett. 1981, 10, 641−644. (b) Kikui, N.; Hinoue, T.; Usuki, Y.;
Satoh, T. Chem. Lett. 2018, 47, 141−143. For a related review, see:
(c) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079−
3159.
(11) For Pd(0)-catalyzed [2 + 2 + 1] cross-cyclotrimerizations of
haloalkenes with alkynes, see: (a) Lee, G. C. M.; Tobias, B.; Holmes,
J. M.; Harcourt, D. A.; Garst, M. E. J. Am. Chem. Soc. 1990, 112,
9330−9336. (b) Silverberg, L. J.; Wu, G.; Rheingold, A. L.; Heck, R.
F. J. Organomet. Chem. 1991, 409, 411−420. (c) Kotora, M.;
Matsumura, H.; Gao, G.; Takahashi, T. Org. Lett. 2001, 3, 3467−
3470. (d) Shibata, K.; Satoh, T.; Miura, M. Adv. Synth. Catal. 2007,
349, 2317−2325. (e) Horiguchi, H.; Hirano, K.; Satoh, T.; Miura, M.
Adv. Synth. Catal. 2009, 351, 1431−1436. (f) Huang, H.; Li, J.;
Lescop, C.; Duan, Z. Org. Lett. 2011, 13, 5252−5255. For a recent
similar process of in situ generated haloalkenes with alkynes, see:
(g) Suzuki, S.; Kinoshita, H.; Miura, K. Org. Lett. 2019, 21, 1612−
1616.
(21) (a) Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40,
5030−5048. (b) Wang, C.; Rakshit, S.; Glorius, F. J. Am. Chem. Soc.
2010, 132, 14006−14008.
(22) There are only two examples on the dipolar cycloaddition of
3aa, see: (a) Dhar, D. N.; Ragunathan, R. Tetrahedron 1984, 40,
1585−1590. (b) Saeki, T.; Toshimitsu, A.; Tamao, K. Silicon Chem.
2003, 2, 125−129.
(23) For an endocyclic epoxidation of pentafulvenes, see: Adam, W.;
Hadjiarapoglou, L. P.; Meffert, A. Tetrahedron Lett. 1991, 32, 6697−
6700.
(24) Jones, D. J.; Purushothaman, B.; Ji, S.; Holmes, A. B.; Wong, W.
W. H. Chem. Commun. 2012, 48, 8066−8088.
(12) For Pd(II)-catalyzed [2 + 2 + 1] cross-cyclotrimerizations of
alkenes with alkynes, see: (a) Phukon, J.; Gogoi, S. Chem. Commun.
2020, 56, 1133−1136. (b) Du, X.; Suguro, M.; Hirabayashi, K.; Mori,
E
Org. Lett. XXXX, XXX, XXX−XXX