10240 J. Am. Chem. Soc., Vol. 123, No. 42, 2001
Sugasaki et al.
association constants and (ii) because they are expressed even
in normal tissues and sera,7 the receptor’s function must change
from a tense (T) state to a rest (R) state only above the critical
concentrations as alllosteric proteins seen in nature.
aqueous media to form 1:2 1/Lewis oligosaccharide complexes
with Hill coefficients 1.8-2.0. To the best of our knowledge,
It thus occurred to us that the concept of “positive homotropic
allosterism”8,9 might be successfully applied to the molecular
design of a desired Lewis oligosaccharide binding system,
because (i) the binding isotherm is characterized by a sigmoid-
shaped curve with a steep threshold region and (ii) the
association constants and binding signal are amplified by the
cooperative action in a positive homotropic allosteric binding
process.9h,i Provided that positive homotropic allosterism oper-
ates, as expected, in the Lewis oligosaccharide binding process,
it would become possible to detect these essential oligosaccha-
rides selectively and sensitively only above the critical concen-
trations.
Recently, we designed phenylboronic acid group appended
cerium(IV) bis(porphyrinate) double decker 110 and meso-meso
linked porphyrin dimer 211 as artificial oligosaccharide recep-
tors.12 In these studies, we have demonstrated that (i) compounds
1 and 2 can bind malto- or laminari-oligosaccharides coopera-
tively and effectively in aqueous solution, (ii) the positive
homotropic allosterism is indispensable for highly efficient
oligosaccharide binding, and (iii) the binding signal is amplified
according to a sigmoidal isotherm through positive homotropic
allosterism. These findings clearly show that these compounds
would act as candidates for Lewis oligosaccharide binding
receptors, which are expected to work even in aqueous solution.
In this contribution, we report that 1 can bind Lewis
oligosaccharides because of positive homotropic allosterism in
this is the first totally synthetic artificial receptor which can
touch Lewis oligosaccharides in aqueous media sensitiVely only
aboVe the critical concentrations. The rational amalgamation
of artificial saccharide binding moieties, “boronic acids,”13 and
the concept of “allosterism” now paves the way to construct a
biologically important oligosaccharide sensing system useful in
aqueous solution.
(6) Monoclonal antibody has been used to determine the concentrations
of sLex antigen and sialyl Tn antigen by immunoradiometric assay and
radioimmunoassay, respectively, see: Springer, G. F. Immunol. Ser. 1990,
53, 587.
(7) Quantitative and qualitative characterization of cancer-associated
serum glycoprotein antigens, see: (a) Kannagi, R.; Fukushi, Y.; Tachikawa,
T.; Noda, A.; Shin, S.; Shigeta, K.; Hiraiwa, N.; Fukuda, Y.; Inamoto, T.;
Hakomori, S.; Imura, T. Cancer Res. 1986, 46, 2619. (b) Kannagi, R.;
Fukushi, Y.; Tachikawa, T.; Noda, A.; Shin, S.; Kitahara, A.; Itai, S.; Arii,
S.; Shigeta, K.; Hiraiwa, N.; Fukuda, Y.; Hakomori, S.; Imura, T. Cancer
Res. 1988, 48, 3856.
(8) (a) Blanc, S.; Yakirevitch, P.; Leize, E.; Meyer, M.; Libman, J.; Van
Dorsselaer, A.; Albrecht-Gray, A. M.; Shanzer, A. J. Am. Chem. Soc. 1997,
119, 4934. (b) Kobayashi, K.; Asakawa, Y.; Kato, Y.; Aoyama, Y. J. Am.
Chem. Soc. 1992, 114, 10307. (c) Rebek, J., Jr. Acc. Chem. Res. 1984, 17,
258. (d) Rebek, J., Jr.; Costello, T.; Marshall, L.; Wattley, R.; Gadwood,
R. C.; Onan, K. J. Am. Chem. Soc. 1985, 107, 7481. (e) Ebmeyer, E.; Rebek,
J., Jr. Angew. Chem., Int. Ed. Engl. 1990, 29, 1148. (f) Glass, T. E. J. Am.
Chem. Soc. 2000, 122, 4522. (g) Takeuchi, M.; Shioya, T.; Swager, T. M.
Angew. Chem., Int. Ed. Engl. 2001, 40, 3372.
(9) (a) Takeuchi, M.; Imada, T.; Shinkai, S. Angew. Chem., Int. Ed. Engl.
1998, 37, 2096. (b) Sugasaki, A.; Ikeda, M.; Takeuchi, M.; Robertson, A.;
Shinkai, S. J. Chem. Soc., Perkin Trans. 1, 1999, 3259. (c) Ikeda, M.;
Tanida, T.; Takeuchi, M.; Shinkai, S. Org. Lett. 2000, 2, 1803. (d) Ikeda,
M.; Takeuchi, M.; Sugasaki, A.; Robertson, A.; Imada, T.; Shinkai, S.
Supramol. Chem. 2000, 12, 321. (e) Sugasaki, A.; Ikeda, M.; Koumoto,
K.; Takeuchi, M.; Shinkai, S. Tetrahedron 2000, 56, 4717. (f) Yamamoto,
M.; Sugasaki, A.; Ikeda, M.; Takeuchi, M.; Frimat, K.; James, T. D.;
Shinkai, S. Chem. Lett. 2001, 520. (g) Robertson, A.; Ikeda, M.; Takeuchi,
M.; Shinkai, S. Bull. Chem. Soc. Jpn. 2001, 74, 883. (h) Shinkai, S.; Ikeda,
M.; Sugasaki, A.; Takeuchi, M. Acc. Chem. Res. 2001, 34, 494. (i) Takeuchi,
M.; Ikeda, M.; Sugasaki, A.; Shinkai, S. Acc. Chem. Res., in press.
(10) Sugasaki, A.; Ikeda, M.; Takeuchi, M.; Shinkai, S. Angew. Chem.,
Int. Ed. 2000, 39, 3839. The phenyl boronic acid group appended Ce(IV)
bis(porphyrinate) double decker 1 can bind maltooligosaccharides effectively
through positive homotropic allosterism to form only the 1:2 complexes.
In this system, the binding of the first oligosaccharide to a pair of boronic
acid groups, although very weak, can suppress the rotation of the two
porphyrin planes; as a result, the subsequent binding of the oligosaccharide
to the residual pair of aligned boronic acid groups can occur cooperatively.
(11) Ikeda, M.; Shinkai, S.; Osuka, A. Chem. Commun. 2000, 1047.
(12) (a) Kral, V.; Rusin, O.; Schmidtchen, F. P. Org. Lett. 2001, 3, 873.
(b) Nagai, Y.; Kobayashi, K.; Toi, H.; Aoyama, Y. Bull. Chem. Soc. Jpn.
1993, 66, 2965.
Results and Discussion
Molecular Design. Diboronic acid derivatives, which can
react with four of the five OH groups of saccharide to form
intramolecular 1:1 complexes, show a different stability order,
which is related to the specific spatial position of two boronic
acid groups.13 This implies that one can recognize a specific
saccharide guest by appropriate manipulation of two boronic
acids in a same host molecule. The present research aim is to
extend this concept to the selective binding of biologically
important Lewis oligosaccharides. This idea has been tested with
a few diboronic acid systems bearing a “long” and “rigid”
spacer: for example, diphenyl-3,3′-diboronic acid, stilbene-3,3′-
diboronic acid,14 and cis-5,15-bis[2-(dihydroxyboronyl)phenyl]-
10,20-diphenylporphirin15 show some selectivity for certain
disaccharides, but the selectivity and the affinity observed so
far are not so high. To improve the affinity and the selectivity
toward oligosaccharides, one should look for a new conceptual
design scheme by which one might be able to finely tune the
distance between two boronic acid groups. From recent research
on artificial cooperative recognition systems, it has been
suggested that positive homotropic allosterism can be utilized
as a new concept to achieve both high guest selectivity and
high guest affinity which cannot be attained by the conventional
1:1-type guest binding.9 The scaffolds that show positive
(13) Recent review see: (a) James, T. D.; Sandanayake, K. R. A. S.;
Shinkai, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 1910. (b) James, T. D.;
Linnane, P.; Shinkai, S. Chem. Commun. 1996, 281. (c) Shinkai, S.;
Takeuchi, M. Trends Anal. Chem. 1996, 15, 418. (d) Norrild, J. C.; Eggert,
H. J. Am. Chem. Soc. 1995, 117, 1479.
(14) Sandanayake, K. R. A. S.; Nakashima, K.; Shinkai, S. J. Chem.
Soc., Chem. Commun. 1994, 1621.
(15) Kijima, H.; Takeuchi, M.; Shinkai, S. Chem. Lett. 1998, 781.