4438
In conclusion, we have shown that Na-methylation of a glycosylated serine results in a substantial
increase in the rate of b-elimination on base-catalyzed removal of O-acyl protective groups from
glycopeptides. We interpret this result as being due to the fact that a protective aza-enolate
cannot be formed adjacent to the carbohydrate moiety. Since b-elimination is often encountered
on removal of benzoyl protective groups from O-linked glycopeptides,1,7 10 and cannot be
avoided if the carbohydrate is linked to a N-methylated serine, novel protective groups should
®nd use in the synthesis of glycopeptides. Investigations of such protective groups are now in
progress in our laboratory.
Acknowledgements
This work was funded by grants from the Swedish Natural Science Research Council and the
Swedish Research Council for Engineering Sciences.
References
1. Paulsen, H.; Schultz, M.; Klamann, J.-D.; Waller, B.; Paal, M. Liebigs Ann. Chem. 1985, 2028±2048.
2. Schultheiss-Reimann, P.; Kunz, H. Angew. Chem., Suppl. 1983, 39±46.
3. Kunz, H. Angew. Chem., Int. Ed. Engl. 1987, 26, 294±308.
4. Kunz, H.; Brill, W. K.-D. Trends Glycosci. Glycotechnol. 1992, 4, 71±82.
5. Hoogerhout, P.; Guis, C. P.; Erkelens, C.; Bloemho, W.; Kerling, K. E. T.; van Boom, J. H. Recl. Trav. Chim.
Pays-Bas 1985, 104, 54±59.
6. Andrews, D. M.; Seale, P. W. Int. J. Peptide Protein Res. 1993, 42, 165±170.
7. Erbing, B.; Lindberg, B.; Norberg, T. Acta Chem. Scand. 1978, B32, 308±310.
8. Reimer, K. B.; Meldal, M.; Kusumoto, S.; Fukase, K.; Bock, K. J. Chem. Soc., Perkin Trans. 1 1993, 925±932.
9. Sjolin, P.; Elofsson, M.; Kihlberg, J. J. Org. Chem. 1996, 61, 560±565.
10. Sjolin, P.; George, S. K.; Bergquist, K. E.; Roy, S.; Svensson, A.; Kihlberg, J. J. Chem. Soc., Perkin Trans. 1 1999,
1731±1742.
11. Seebach, D. Aldrichim. Acta 1992, 25, 59±66.
12. Kihlberg, J.; Ahman, J.; Walse, B.; Drakenberg, T.; Nilsson, A.; Soderberg-Ahlm, C.; Bengtsson, B.; Olsson, H.
J. Med. Chem. 1995, 38, 161±169.
13. Compound 7: H NMR (400 MHz, CDCl3), rotamers (ꢁ2:1), ꢀ (ppm): 5.37±5.42 (m, 2H, H-4,40), 5.21 (dd, 1H,
1
J=7.9, 10.5 Hz, H-20), 5.14 (dd, 1H, J=8.0, 10.5 Hz, H-2), 4.58 (d, 1H, J=7.9 Hz, H-1), 4.27 (d, 1H, J=8.0 Hz,
H-10), 3.05 (s, 1H, Me), 2.99 (s, 1H, Me0); FABMS: (M+Na)+ 860 calcd, 860 obsd.
14. Szabo, L.; Li, Y. S.; Polt, R. Tetrahedron Lett. 1991, 32, 585±588.
15. Glycopeptide 8: yield 97%; 1H NMR (400 MHz, Acetone-d6), ꢀ (ppm): Ala 4.21 (m, 1H, H-a), 1.32 (d, 3H, J=7.2
Hz, Me); Ser 4.36 (m, 1H, H-a), 3.84 (dd, 1H, J=7.3, 10.7 Hz, H-b), 3.76 (dd, 1H, J=4.8, 10.7 Hz, H-b0); Phe 4.51
(m, 1H, H-a), 3.26 (dd, 1H, J=4.4, 14.0 Hz, H-b), 2.99 (dd, 1H, J=9.8, 13.9 Hz, H-b0); Gal 4.74 (d, 1H, J=7.6
1
Hz, H-1); FABMS: (M+H)+ 695 calcd, 695 obsd. Glycopeptide 9: yield 86%; H NMR (400 MHz, Acetone-d6),
major rotamer, ꢀ (ppm): Ala 4.82 (m, 1H, H-a), 1.31 (d, 3H, J=6.9 Hz, Me); Ser 5.16 (dd, 1H, J=4.7, 9.4 Hz, H-
a), 3.9±4.0 (m, 2H, H-b,b0); Phe 4.54 (ddd, 1H, J=3.8, 8.7, 11.2 Hz, H-a), 3.28 (dd, 1H, J=3.7, 14.0 Hz, H-b),
2.92 (dd, 1H, J=11.3, 13.9 Hz, H-b0); Gal 4.75 (d, 1H, J=7.9 Hz, H-1); minor rotamer, ꢀ (ppm): Ala 1.19 (d, 3H,
J=6.8 Hz, Me); Phe 4.62 (m, 1H, H-a), 3.20 (dd, 1H, J=5.1, 14.1 Hz, H-b), 2.95 (m, 1H, H-b0); Gal 4.72 (d, 1H,
J=7.6 Hz, H-1); FABMS: (M+H)+ 709 calcd, 709 obsd. Glycopeptide 10: yield 39%; 1H NMR (400 MHz,
Acetone-d6), rotamers (ꢁ1:1), ꢀ (ppm): Ala 4.38 (t, 1H, J=7.2 Hz, H-a), 4.31 (t, 1H, J=7.2 Hz, H-a); Ser 4.5±4.6
(m, 1H, H-a); Phe 5.20 (dd, 1H, J=6.5, 9.0 Hz, H-a); Gal 4.80 (d, 1H, J=7.9 Hz, H-1), 4.42 (d, 1H, J=7.9 Hz, H-
1); FABMS: (M+H)+ 709 calcd, 709 obsd.
16. Rink, H. Tetrahedron Lett. 1987, 28, 3787±3790.
17. Bernatowicz, M. S.; Daniels, S. B.; Koster, H. Tetrahedron Lett. 1989, 30, 4645±4648.