PRNA and Control of DNA Recognition
J. Am. Chem. Soc., Vol. 122, No. 29, 2000 6909
γ-CH2), 3.85 (9 H, m, Boc-NHCH, 3′-H and 4′-H), 4.04 (4 H, m, 2′-
H), 4.20 (3 H, m, R-CH), 5.21 (4 H, br, 3′-OH), 5.37 (4 H, br, 2′-OH),
5.64 (4 H, d, J5,6 ) 7.8, 5-H), 5.73 (4 H, d, J1′,2′ ) 5.9, 1′-H), 6.87 (1
H, d, JNH,CH ) 8.3, Boc-NH), 7.65 (4 H, d, J6,5 ) 8.3, 6-H), 7.95 (4 H,
m, 5′-NH), 8.13 (3 H, m, R-NH), 11.33 (4 H, s, 3-NH); MALDI-TOF
HRMS (R-CHCA), m/z found 1557.52 (M + Na), calculated 1557.523.
TFA‚(isoGln(5′U))4-OBzl (13). 11 (0.600 g, 0.369 mmol) was
dissolved in TFA (5 mL), and the solution was kept at 0 °C for 30
min. TFA was removed under reduced pressure, and ether (100 mL)
(8 H, m, R-NH), 11.33 (8 H, s, 3-NH); MALDI-TOF HRMS
(R-CHCA), m/z found 3360.13 (M + Na), calculated 3360.134.
HCl‚(isoGln(5′U))8
-Lys-OH (17). 16 (0.300 g, 0.090 mmol) was
dissolved in TFA (10 mL), and the solution was kept at -10 °C under
nitrogen atmosphere. Thioanisole (1.84 mL, 15.7 mmol), m-cresol (0.97
mL, 9.27 mmol), and trimethylsilyl triflate (3.00 mL, 16.6 mmol) were
successively added, and the mixture was stirred for 1 h at 0 °C. Ether
(200 mL) was added, and the precipitate was filtered. The precipitate
was dissolved in 5% aqueous ammonia. After 30 min, the solvent was
removed under reduced pressure, and the residue was treated with 4
M HCl in dioxane for 30 min. The solvent was removed under reduced
pressure, and the residue was purified by gel filtration and reverse phase
HPLC to give compound 17 as a powder (0.223 g, 82%), νmax(KBr)/
was added to give compound 13 as a powder (0.593 g, 98%), νmax
-
(KBr)/cm-1 3420, 1680, 1540, 1460, 1390, 1270, and 1130; H NMR
(270 MHz, DMSO-d6) δ 1.76-1.89 (8 H, m, â-CH2), 2.13-2.25 (6 H,
m, γ-CH2), 2.34 (2 H, t, Jγ,â ) 8.3, γ-CH2), 3.83 (9 H, m, NH3+CH,
3′-H and 4′-H), 4.05-4.22 (7 H, m, R-CH and 2′-H), 5.06 (2 H, s,
PhCH2), 5.16 (3 H, m, 3′-OH), 5.24 (1 H, d, JOH,3′ ) 4.9, 3′-OH), 5.42
(3 H, m, 2′-OH), 5.48 (1 H, d, JOH,2′ ) 5.4, 2′-OH), 5.64 (4 H, m,
5-H), 5.73 (4 H, m, 1′-H), 7.35 (5 H, m, Ar-H), 7.66 (4 H, m, 6-H),
7.95 (3 H, m, 5′-NH), 8.13 (6 H, m, R-NH and NH3+), 8.61 (1 H, m,
5′-NH), 11.35 (4 H, m, 3-NH); MALDI-TOF HRMS (R-CHCA), m/z
found 1548.52 (M - CF3COO + Na), calculated 1548.526.
1
1
cm-1 3420, 1680, 1540, 1460, 1390, 1270, and 1110; H NMR (270
MHz, DMSO-d6) δ 1.35 (4 H, m, γ-CH2(Lys) and δ-CH2(Lys)), 1.70-
1.83 (16 H, m, â-CH2(Glu)), 2.14 (16 H, m, γ-CH2(Glu)), 2.98 (2 H,
m, ꢀ-CH2(Lys)), 3.84 (17 H, m, NH3+CH, 3′-H and 4′-H), 4.06 (8 H,
m, 2′-H), 4.20 (8 H, m, R-CH), 5.17 (8 H, m, 3′-OH), 5.41 (8 H, m,
2′-OH), 5.65 (8 H, d, J5,6 ) 7.8, 5-H), 5.73 (8 H, d, J1′,2′ ) 5.9, 1′-H),
7.24 (2 H, br, ꢀ-NH2), 7.65 (8 H, d, J6,5 ) 7.8, 6-H), 7.95 (8 H, m,
5′-NH), 8.14 (11 H, m, R-NH and NH3+), 8.59 (1 H, m, 5′-NH), 11.34
(8 H, m, 3-NH); MALDI-TOF HRMS (R-CHCA), m/z found 2980.06
(M - HCl), calculated 2980.055.
Boc-(isoGln(5′U))8-OBzl (14). To a solution of 12 (0.468 g, 0.305
mmol), HOBt (0.041 g, 0.305 mmol), and BOP reagent (0.135 g, 0.305
mmol) in DMF (30 mL) was added diisopropylethylamine (0.11 mL,
0.641 mmol). After 30 s of stirring at 0 °C, 13 (0.550 g, 0.335 mmol)
was added, and the mixture was stirred for 4 h at room temperature.
The solvent was removed under reduced pressure, and methanol was
added to give compound 14 as a powder (0.854 g, 92%), νmax(KBr)/
Nr-t-Butoxycarbonyl-N5-(N4-benzoyl-5′-deoxy-5′-cytidyl)-L-iso-
glutamine benzyl ester (Boc-isoGln(5′BzC)-OBzl) (18). To a solution
of N-t-butoxycarbonyl-L-glutamic acid γ-benzyl ester (2.52 g, 7.47
mmol), HOBt (1.01 g, 7.47 mmol), and BOP reagent (3.30 g, 7.47
mmol) in DMF (100 mL) was added diisopropylethylamine (1.30 mL,
7.47 mmol). After 30 s of stirring at 0 °C, 5′-amino-5′-deoxycytidine
(3)18 (2.85 g, 8.22 mmol) was added, and the mixture was stirred for
1 h at room temperature. The solvent was removed under reduced
pressure, and methanol was added to precipitate a white solid. After
filtration, the product was recrystallized from methanol to give
compound 18 (4.48 g, 90%), νmax(KBr)/cm-1 3420, 1690, 1560, 1480,
1320, 1260, and 1140; 1H NMR (270 MHz, DMSO-d6) δ 1.36 (9 H, s,
t-Bu-H), 1.77-1.90 (2 H, m, â-CH2), 2.37 (2 H, t, Jγ,â ) 7.8, γ-CH2),
3.43 (2 H, m, 5′-H), 3.83 (1 H, q, J3′,2′ ) J3′,4′ ) 5.5, 3′-H), 3.92 (1 H,
q, J4′,3′ ) J4′,5′ ) 5.5, 4′-H), 3.98 (1 H, q, JCH,NH ) JCH,â ) 4.9, Boc-
NHCH), 4.07 (1 H, q, J2′,1′ ) J2′,3′ ) 4.7, 2′-H), 5.06 (2 H, s, PhCH2),
5.17 (1 H, d, JOH,3′ ) 5.9, 3′-OH), 5.49 (1 H, d, JOH,2′ ) 5.4, 2′-OH),
5.80 (1 H, d, J1′,2′ ) 3.9, 1′-H), 6.95 (1 H, d, JNH,CH ) 7.8, Boc-NH),
7.34 (5 H, m, Ar-H), 7.40 (1 H, d, J5,6 ) 7.8, 5-H), 7.52 (2 H, t, Jm,o
) Jm,p ) 7.6, Ar-m-H), 7.63 (1 H, t, Jp,m ) 7.6, Ar-p-H), 8.01 (2 H, d,
Jo,m ) 7.3, Ar-o-H), 8.07 (1 H, t, JNH,5′ ) 5.6, 5′-NH), 8.19 (1 H, d,
J6,5 ) 7.3, 6-H); MALDI-TOF HRMS (R-CHCA), m/z found 688.26
(M + Na), calculated 688.260.
1
cm-1 3420, 1680, 1530, 1460, 1400, 1270, and 1130; H NMR (270
MHz, DMSO-d6) δ 1.37 (9 H, s, t-Bu-H), 1.71-1.82 (16 H, m, â-CH2),
2.14 (14 H, m, γ-CH2), 2.34 (2 H, t, Jγ,â ) 7.8, γ-CH2), 3.25-3.42
(16 H, m, 5′-H), 3.83 (17 H, m, Boc-NHCH, 3′-H and 4′-H), 4.05 (8
H, m, 2′-H), 4.20 (7 H, m, R-CH), 5.06 (2 H, s, PhCH2), 5.15 (8 H, d,
JOH,3′ ) 3.4, 3′-OH), 5.39 (8 H, d, JOH,2′ ) 5.4, 2′-OH), 5.64 (8 H, d,
J5,6 ) 7.8, 5-H), 5.73 (8 H, d, J1′,2′ ) 5.4, 1′-H), 6.87 (1 H, d, JNH,CH
) 7.3, Boc-NH), 7.35 (5 H, m, Ar-H), 7.64 (8 H, d, J6,5 ) 7.8, 6-H),
7.95 (8 H, m, 5′-NH), 8.13 (7 H, m, R-NH), 11.33 (8 H, s, 3-NH);
MALDI-TOF HRMS (R-CHCA), m/z found 3064.04 (M + Na),
calculated 3064.041.
Boc-(isoGln(5′U))8-OH (15). Palladium on activated carbon (10%;
∼0.1 g) was added to a solution of 14 (0.800 g, 0.263 mmol) in
methanol-DMF (1:3 v/v) (50 mL). After 6 h of continued stirring under
hydrogen atmosphere (1 atm) at room temperature, the reaction mixture
was filtered, and the filtrate was evaporated under reduced pressure to
give compound 15 as a powder (0.745 g, 96%), νmax(KBr)/cm-1 3410,
1680, 1540, 1470, 1390, 1260, and 1110; 1H NMR (270 MHz, DMSO-
d6) δ 1.37 (9 H, s, t-Bu-H), 1.70-1.82 (16 H, m, â-CH2), 2.15 (16 H,
m, γ-CH2), 3.83 (17 H, m, Boc-NHCH, 3′-H and 4′-H), 4.05 (8 H, m,
2′-H), 4.19 (7 H, m, R-CH), 5.18 (8 H, m, 3′-OH), 5.29 (8 H, m, 2′-
OH), 5.65 (8 H, d, J5,6 ) 7.8, 5-H), 5.73 (8 H, d, J1′,2′ ) 5.9, 1′-H),
6.88 (1 H, d, JNH,CH ) 8.8, Boc-NH), 7.65 (8 H, d, J6,5 ) 8.3, 6-H),
7.95 (8 H, m, 5′-NH), 8.14 (8 H, m, R-NH), 11.33 (8 H, s, 3-NH);
MALDI-TOF HRMS (R-CHCA), m/z found 2973.99 (M + Na),
calculated 2973.994.
N5-(N4-benzoyl-5′-deoxy-5′-cytidyl)-L-isoglutamine benzyl ester
trifluoroacetic acid salt (TFA‚isoGln(5′BzC)-OBzl) (19). 18 (4.20
g, 6.31 mmol) was dissolved in TFA (50 mL), and the solution was
kept at 0 °C for 30 min. TFA was removed under reduced pressure,
and ether (200 mL) was added to give compound 19 as a powder (4.20
g, 98%), νmax(KBr)/cm-1 3400, 1680, 1560, 1480, 1320, 1250, 1200,
and 1140; 1H NMR (270 MHz, DMSO-d6) δ 1.79-1.92 (2 H, m,
â-CH2), 2.42 (2 H, t, Jγ,â ) 7.9, γ-CH2), 3.82 (3 H, m, NH3+CH, 3′-H
and 4′-H), 4.10 (1 H, q, J2′,1′ ) J2′,3′ ) 4.9, 2′-H), 5.07 (2 H, s, PhCH2),
5.20 (1 H, d, JOH,3′ ) 5.6, 3′-OH), 5.52 (1 H, d, JOH,2′ ) 5.4, 2′-OH),
Boc-(isoGln(5′U))8-Lys(ClZ)-OBzl (16). To a solution of 15 (0.700
g, 0.237 mmol), HOBt (0.032 g, 0.237 mmol), and BOP reagent (0.105
g, 0.237 mmol) in DMF (30 mL) was added diisopropylethylamine
(0.04 mL, 0.237 mmol). After 30 s of stirring at 0 °C, Nꢀ-2-
chlorobenzyloxycarbonyl-O-benzyl-L-lysine (0.106 g, 0.261 mmol) was
added, and the mixture was stirred for 4 h at room temperature. The
solvent was removed under reduced pressure, and methanol was added
to give compound 16 as a powder (0.712 g, 90%), νmax(KBr)/cm-1
5.78 (1 H, d, J1′,2′ 4.2, 1′-H), 7.33 (5 H, m, Ar-H), 7.41 (1 H, d, J5,6
7.7, 5-H), 7.51 (2 H, t, Jm,o ) Jm,p ) 7.6, Ar-m-H), 7.62 (1 H, t, Jp,m
)
)
)
7.6, Ar-p-H), 8.03 (2 H, d, Jo,m ) 7.4, Ar-o-H), 8.05 (1 H, t, JNH,5′
+
5.8, 5′-NH), 8.20 (4 H, m, NH3 and 6-H), 11.45 (1 H, s, 4-NH);
MALDI-TOF HRMS (R-CHCA), m/z found 566.22 (M - CF3COO),
calculated 566.225.
1
3330, 1680, 1540, 1470, 1390, 1270, and 1130; H NMR (270 MHz,
DMSO-d6) δ 1.36 (13 H, m, t-Bu-H, γ-CH2(Lys) and δ-CH2(Lys)),
1.57-1.84 (18 H, m, â-CH2(Glu) and â-CH2(Lys)), 2.14 (16 H, m,
â-CH2(Glu)), 2.98 (2 H, m, ꢀ-CH2(Lys)), 3.83 (17 H, m, Boc-NHCH,
3′-H and 4′-H), 4.05 (8 H, m, 2′-H), 4.20 (8 H, m, R-CH), 5.07 (2 H,
s, PhCH2), 5.08 (2 H, s, Cl-PhCH2), 5.16 (8 H, d, JOH,3′ ) 3.9, 3′-
OH), 5.39 (8 H, d, JOH,2′ ) 5.4, 2′-OH), 5.65 (8 H, d, J5,6 ) 7.8, 5-H),
5.73 (8 H, d, J1′,2′ ) 5.9, 1′-H), 6.87 (1 H, d, JNH,CH ) 7.3, Boc-NH),
6.99 (1 H, m, ꢀ-NH(Lys)), 7.35 (5 H, m, Ar-H(Bzl)), 7.45 (4 H, m,
Ar-H(Cl-Z)), 7.65 (8 H, d, J6,5 ) 7.8, 6-H), 7.96 (8 H, m, 5′-NH), 8.14
Boc-isoGln(5′U)-isoGln(5′BzC)-OBzl (20). To a solution of 9 (1.25
g, 2.65 mmol), HOBt (0.358 g, 2.65 mmol), and BOP reagent (1.17 g,
2.65 mmol) in DMF (50 mL) was added diisopropylethylamine (0.97
mL, 5.57 mmol). After 30 s of stirring at 0 °C, 19 (1.98 g, 2.92 mmol)
was added, and the mixture was stirred for 2 h at room temperature.
The solvent was removed under reduced pressure, and methanol was
added to give compound 20 as a powder (2.65 g, 98%), νmax(KBr)/
1
cm-1 3420, 1650, 1560, 1490, 1390, 1260, 1170, and 1080; H NMR
(270 MHz, DMSO-d6) δ 1.35 (9 H, s, t-Bu-H), 1.78-1.92 (4 H, m,