Page 7 of 9
Journal of the American Chemical Society
(1) For general references on the construction of amines, see:
(13) Hammett constant values were obtained from: (a) Anslyn,
E. V.; Dougherty, D. A. In Modern Physical Organic Chemis-
try; University Science Books: Sausalito, 2006; Chapter 8.3,
p 446. (b) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991,
91, 165.
(14) See ref. 11 for a mechanistic investigation of CuH-catalyzed
ketone reduction that reached a similar conclusion.
(15) For a review of KIEs in organometallic reactions that in-
cludes KIE studies with silanes, see: Gómez-Gallego, M.; Si-
erra, M. A. Chem. Rev. 2011, 111, 4857.
(16) For representative examples of the characterization of phos-
phine-ligated CuH species, see: (a) Bezman, S. A.; Church-
ill, M. R.; Osborn, J. A.; Wormald, J. J. Am. Chem. Soc. 1971,
93, 2063. (b) Goeden, G. V.; Huffman, J. C.; Caulton, K. G.
Inorg. Chem. 1986, 25, 2484. (c) Mao, Z.; Huang, J. S.; Che,
C. M.; Zhu, N.; Leung, S. K. Y.; Zhou, Z. Y. J. Am. Chem. Soc.
2005, 127, 4562.
(17) For representative examples of NHC-ligated CuH species,
see: (a) Mankad, N. P.; Laitar, D. S.; Sadighi, J. P. Organo-
metallics 2004, 23, 3369. (b) Suess, A. M.; Uehling, M. R.;
Kaminsky, W.; Lalic, G. J. Am. Chem. Soc. 2015, 137, 7747.
(18) Bertrand has also synthesized a room temperature stable cy-
clic (alkyl)-(amino)carbene (CAAC) copper(I) hydride
dimer: Frey, G. D.; Donnadieu, B.; Soleilhavoup, M.; Ber-
trand, G. Chem. Asian J. 2011, 6, 402.
(19) Lipshutz has reported spectroscopic evidence for a (DTBM-
SEGPHOS)CuH complex: Lipshutz, B. H.; Frieman B. A.
Angew. Chem. Int. Ed. 2005, 44, 6345.
(20) For an initial report of generating CuH catalyst from
Cu(OAc)2, see: Lee, D.-W.; Yun, J. Tetrahedron Lett. 2004,
45, 5415.
(21) (a) Lemmen, T. H.; Folting, K.; Huffman, J. C.; Caulton, K.
G. J. Am. Chem. Soc. 1985, 107, 7774. (b) Albert, C. F.; Hea-
ly, P. C.; Kildea, J. D.; Raston, C. L. Skelton, B. W.; White, A.
H. Inorg. Chem. 1989, 28, 1300. (c) Eberhart, M. S.; Norton,
J. R.; Zuzek, A.; Sattler, W.; Ruccolo, S. J. Am. Chem. Soc.
2013, 135, 17262.
1
2
3
4
5
6
7
8
(a) Lawrence, S. A. Amines; Cambridge University Press:
Cambridge, 2006. (b) Ricci, A. Modern Amination Methods;
Wiley: Weinheim, 2008. (c) Nugent, T. C. Chiral Amine
Synthesis; Wiley: Weinheim, 2010. (d) Li, W.; Zhang, X.
Stereoselective Formation of Amines; Springer: Berlin, 2014.
(2) For a general review on late transition metal-catalyzed hy-
droaminations, see: Huang, L.; Arndt, M.; Gooßen, K.;
Heydt, H.; Gooßen, L. J. Chem. Rev. 2015, 115, 2596.
(3) For general reviews, see: (a) Coman, S. M.; Parvulescu, V. I.
Org. Process Res. Dev. 2015, 19, 1327. (b) Lee, A. V.; Schaf-
er, L. L. Eur. J. Inorg. Chem. 2007, 2243. (c) Hultzsch, K. C.
Adv. Synth. Catal. 2005, 347, 367. (d) Hong, S.; Marks, T. J.
Acc. Chem. Res. 2004, 37, 673.
(4) For representative examples of other methods of hydroam-
ination (i.e. base-catalyzed, Brønsted acid-catalyzed, radi-
cal-based, and pericyclic reaction-based), see: (a) Seayad,
J.; Tillack, A.; Hartung, C. G.; Beller, M. Adv. Synth. Catal.
2002, 344, 795. (b) Schulummer, B.; Hartwig, J. F. Org.
Lett. 2002, 4, 1471. (c) Anderson, L. L.; Arnold, J.; Berg-
man, R. G. J. Am. Chem. Soc. 2005, 127, 14542. (d) Shapiro,
N. D.; Rauniyar, V.; Hamilton, G. L.; Wu, J.; Toste, F. D.
Nature 2011, 470, 245. (e) Lin, J.-S.; Yu, P.; Huang, L.;
Zhang, P.; Tan, B.; Liu, X.-Y. Angew. Chem. Int. Ed. 2015,
54, 7847. (f) Guin, J.; Mück-Lichtenfield, C.; Grimme, S.;
Studer, A. J. Am. Chem. Soc. 2007, 129, 4498. (g) Nguyen,
T. M.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135, 9588.
(h) Musacchio, A. J.; Nguyen, L. Q.; Beard, G. H.; Knowles,
R. R. J. Am. Chem. Soc. 2014, 136, 12217. (i) Beauchemin,
A. M.; Moran, J.; Lebrun, M.-E.; Séguin, C.; Dimitrijevic,
E.; Zhang, L.; Gorelsky, S. I. Angew. Chem. Int. Ed. 2008, 47,
1410. (j) Brown, A. R.; Uyeda, C.; Brotherton, C. A.; Jacob-
sen, E. A. J. Am. Chem. Soc. 2013, 135, 6747.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(5) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem. Int.
Ed. 2013, 52, 10830.
(6) Zhu, S.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc.
2013, 135, 15746.
(7) (a) Zhu, S.; Buchwald, S. L. J. Am. Chem. Soc. 2014, 136,
15913. (b) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Org.
Lett. 2014, 16, 1498. (c) Niljianskul, N.; Zhu, S.; Buchwald,
S. L. Angew. Chem., Int. Ed. 2015, 54, 1638. (d) Shi, S.-L.;
Buchwald, S. L. Nature Chem. 2015, 7, 38. (e) Yang, Y.; Shi,
S.-L.; Liu, P.; Buchwald, S. L. Science, 2015, 349, 62. (f)
Niu, D.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 9716.
(8) For representative examples of the analogous Cu-catalyzed
aminoboration, see: (a) Matsuda, N.; Hirano, K.; Satoh, T.;
Miura, M. J. Am. Chem. Soc. 2013, 135, 4934. (b) Sakae, R.;
Hirano, K.; Miura, M. J. Am. Chem. Soc. 2015, 137, 6460.
(9) Similar reaction profiles have been observed in other CuH-
catalyzed processes, see: (a) Uehling, M. R.; Suess, A. M.;
Lalic, G. J. Am. Chem. Soc. 2015, 137, 1424. (b) Van Hov-
eln, R.; Hudson, B. M.; Wedler, H. B.; Bates, D. M.; Le
Gros, G.; Tantillo D. J.; Schomaker, J. M. J. Am. Chem. Soc.
2015, 137, 5346.
(10) For perspectives on reaction progress kinetic analysis
(RPKA), see: (a) Blackmond, D. G. Angew. Chem. Int. Ed.
2005, 44, 4302. (b) Blackmond, D. G. J. Am. Chem. Soc.
2015, 137, 10852.
(11) Other CuH-catalyzed processes have observed fractional
order dependencies on the catalyst, see: Issenhuth, J.-T.;
Notter, F.-P.; Dagorne, S.; Dedieu, A.; Bellemin-Laponnaz,
S. Eur. J. Inorg. Chem. 2010, 529.
(22) We cannot discount that the active catalyst could be an ag-
gregate that forms from a single enantiomer of the ligand.
We thank a reviewer for the suggestion of this possibility.
(23) Linearity has been observed for several other CuH-catalyzed
processes: (a) Appella, D. H.; Moritani, Y.; Shintani, R.; Fer-
reira, E. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121,
9473. (b) Lipshutz, B. H.; Noson, K.; Chrisman, W.; Lower,
A. J. Am. Chem. Soc. 2003, 125, 8779. (c) ref 9b.
(24) Other reports have suggested that a phosphine-ligated CuH
cluster could break apart to form a monomeric species that
is the active catalyst: (a) Mahoney, W. S.; Stryker, J. M. J.
Am. Chem. Soc. 1989, 111, 8818. (b) Chen, J.-X.; Daeuble, J.
F.; Brestensky, D. M.; Stryker, J. M. Tetrahedron 2000, 56,
2153. (c) ref 11.
(25) For general references on LFERs in asymmetric catalysis,
see: (a) ref 13a. (b) Bess, E. N.; Sigman, M. S. In Asymmet-
ric Synthesis II: More Methods and Applications; Christ-
mann, M., Brase, S., Eds.; Wiley-VCH:Weinheim, Germany,
2012; p 363; (c) Harper, K. C.; Sigman, M. S. J. Org. Chem.
2013, 78, 2813.
(26) For selected examples examining the LFER of electronic ef-
fects of chiral catalyst structure: (a) Jacobsen, E. N.; Zhang,
W.; Guler, M. L. J. Am. Chem. Soc. 1991, 113, 6703. (b)
Palucki, M.; Finney, N. S.; Pospisil, P. J.; Guler, M. L.;
Ishida, T.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 948.
For selected studies on the LFER of electronic effects of
substrate structure in enantioselective reactions: (c) Jensen,
(12) Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96.
7
ACS Paragon Plus Environment