2054 Journal of Chemical & Engineering Data, Vol. 55, No. 5, 2010
(4) Suarez-Iglesias, O.; Medina, I.; Pizarro, C.; Bueno, J. L. On predicting
self-diffusion coefficients in fluids. Fluid Phase Equilib. 2008, 269,
80–92.
(5) Sacco, A.; Belorizky, E.; Jeannin, M.; Gorecki, W.; Fries, P. H.
Effective forces between diamagnetic and paramagnetic ions in D2O
at low and moderate ionic strengths: An NMR relaxation study. J.
Phys. II 1997, 7, 1299–1322.
(6) Helm, L. Relaxivity in paramagnetic systems: Theory and mechanisms.
Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49, 45–64.
(7) Kruk, D.; Kowalewski, J. General treatment of paramagnetic relaxation
enhancement associated with translational diffusion. J. Chem. Phys.
2009, 130, 174104.
(8) Bonnet, C. S.; Fries, P. H.; Crouzy, S.; Seneque, O.; Cisnetti, F.;
Boturyn, D.; Dumy, P.; Delangle, P. A Gadolinium-Binding Cyclo-
decapeptide with a Large High-Field Relaxivity Involving Second-
Sphere Water. Chem.sEur. J. 2009, 15, 7083–7093.
(9) Gierer, A.; Wirtz, K. Molekulare Theorie Der Mikroreibung. Z.
Naturforsch., A: Phys. Sci. 1953, 8, 532–538.
(10) Spernol, A.; Wirtz, K. Zur Mikroreibung in Flussigkeiten. Z. Natur-
forsch., A: Phys. Sci. 1953, 8, 522–532.
(11) Edward, J. T. Molecular Volumes and Stokes-Einstein Equation.
J. Chem. Educ. 1970, 47, 261–270.
magnetic susceptibility shifts in NMR spectra. Magn. Reson. Chem.
2001, 39, 723–726.
(28) Belorizky, E.; Fries, P. H.; Gorecki, W.; Jeannin, M. Demagnetizing
Field Effects on High-Resolution NMR-Spectra in Solutions with
Paramagnetic Impurities. J. Phys. II 1991, 1, 527–541.
(29) Peters, J. A.; Huskens, J.; Raber, D. J. Lanthanide induced shifts and
relaxation rate enhancements. Prog. Nucl. Magn. Reson. Spectrosc.
1996, 28, 283–350.
(30) Bertini, I.; Luchinat, C.; Parigi, G. Solution NMR of Paramagnetic
Molecules; Elsevier: Amsterdam, 2001.
(31) Kowalewski, J.; Kruk, D.; Parigi, G. NMR Relaxation in Solution of
Paramagnetic Complexes: Recent Theoretical Progresses for S g 1.
AdV. Inorg. Chem. 2005, 57, 41–104.
(32) Fries, P. H.; Belorizky, E. Electronic relaxation of paramagnetic metal
ions and NMR relaxivity in solution: Critical analysis of various
approaches and application to a Gd(III)-based contrast agent. J. Chem.
Phys. 2005, 123, 124510.
(33) Fries, P. H.; Belorizky, E. Relaxation theory of the electronic spin of
a complexed paramagnetic metal ion in solution beyond the Redfield
limit. J. Chem. Phys. 2007, 126, 204503.
(34) Aman, K.; Westlund, P. O. Direct calculation of 1H2O T1 NMRD
profiles and EPR lineshapes for the electron spin quantum numbers S
) 1, 3/2, 2, 5/2, 3, 7/2, based on the stochastic Liouville equation
combined with Brownian dynamics simulation. Phys. Chem. Chem.
Phys. 2007, 9, 691–700.
(12) Mills, R.; Harris, K. R. The Effect of Isotopic Substitution on Diffusion
in Liquids. Chem. Soc. ReV. 1976, 5, 215–231.
(13) Weingartner, H.; Holz, M.; Sacco, A.; Trotta, M. The Effect of Site-
Specific Isotopic Substitutions on Transport-Coefficients of Liquid
Methanol. J. Chem. Phys. 1989, 91, 2568–2574.
(35) Caravan, P. Strategies for increasing the sensitivity of gadolinium based
MRI contrast agents. Chem. Soc. ReV. 2006, 35, 512–523.
(36) Chang, C. A.; Brittain, H. G.; Telser, J.; Tweedle, M. F. pH
Dependence of Relaxivities and Hydration Numbers of Gadolinium(III)
Complexes of Linear Amino Carboxylates. Inorg. Chem. 1990, 29,
4468–4473.
(37) Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Gadolin-
ium(III) chelates as MRI contrast agents: Structure, dynamics, and
applications. Chem. ReV. 1999, 99, 2293–2352.
(38) Fries, P. H.; Giraud, M.; Belorizky, E. Determination of the rate of a
fast exchanging coordinated molecule in a lanthanide(III) complex
by proton NMR. Phys. Chem. Chem. Phys. 2008, 10, 5817–5821.
(39) Fries, P. H.; Gateau, C.; Mazzanti, M. Practical route to relative
diffusion coefficients and electronic relaxation rates of paramagnetic
metal complexes in solution by model-independent outer-sphere
NMRD. Potentiality for MRI contrast agents. J. Am. Chem. Soc. 2005,
127, 15801–15814.
(40) Fries, P. H.; Kunz, W.; Calmettes, P.; Turq, P. Molecular-Solvent
Model for a Cryptate Solution in Acetonitrile - a Hypernetted-Chain
Study. J. Chem. Phys. 1994, 101, 554–577.
(41) Fries, P. H.; Kunz, W.; Calmettes, P.; Turq, P. Small-Angle Neutron-
Scattering - a Critical-Study of the Contrast Approximation. J. Chem.
Phys. 1994, 101, 578–584.
(42) Richardi, J.; Fries, P. H.; Krienke, H. The solvation of ions in
acetonitrile and acetone: A molecular Ornstein-Zernike study. J. Chem.
Phys. 1998, 108, 4079–4089.
(43) Fischer, R.; Richardi, J.; Fries, P. H.; Krienke, H. The solvation of
ions in acetonitrile and acetone. II. Monte Carlo simulations using
polarizable solvent models. J. Chem. Phys. 2002, 117, 8467–8478.
(44) Wachter, P.; Zistler, M.; Schreiner, C.; Fleischmann, M.; Gerhard,
D.; Wasserscheid, P.; Barthel, J.; Gores, H. J. Temperature Dependence
of the Non-Stokesian Charge Transport in Binary Blends of Ionic
Liquids. J. Chem. Eng. Data 2009, 54, 491–497.
(14) Holz, M.; Weingartner, H.; Sacco, A. Isotope Effects Upon Transla-
tional Diffusion as a Probe for Translation-Rotation Coupling in
Molecular Liquids. Ber. Bunsen-Ges. 1990, 94, 332–336.
(15) Holz, M.; Mao, X. A.; Seiferling, D.; Sacco, A. Experimental study
of dynamic isotope effects in molecular liquids: Detection of transla-
tion-rotation coupling. J. Chem. Phys. 1996, 104, 669–679.
(16) Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of
Gases and Liquids; Wiley: New York, 1954.
(17) Weingartner, H. Isotopic Effects on the Tracer Diffusion of Water,
Methanol and Ethanol Dissolved in Carbon-Tetrachloride at 25-
Degrees-C. J. Chem. Soc., Faraday Trans. 1 1985, 81, 1031–1035.
(18) Wittko, G.; Kohler, W. Influence of isotopic substitution on the
diffusion and thermal diffusion coefficient of binary liquids. Eur. Phys.
J. E 2006, 21, 283–291.
(19) Bagno, A.; Rastrelli, F.; Saielli, G. NMR techniques for the investiga-
tion of solvation phenomena and non-covalent interactions. Prog. Nucl.
Magn. Reson. Spectrosc. 2005, 47, 41–93.
(20) Callaghan, P. T. Principles of Nuclear Magnetic Resonance Micros-
copy; Oxford University Press: New York, 2003.
(21) Jerschow, A.; Muller, N. Suppression of convection artifacts in
stimulated-echo diffusion experiments. Double-stimulated-echo experi-
ments. J. Magn. Reson. 1997, 125, 372–375.
(22) Evans, D. F. The Determination of the Paramagnetic Susceptibility
of Substances in Solution by Nuclear Magnetic Resonance. J. Chem.
Soc. 1959, 2003–2005.
(23) Zimmerman, J. R.; Foster, M. R. Standardization of NMR High
Resolution Spectra. J. Phys. Chem. 1957, 61, 282–289.
(24) Loliger, J.; Scheffol, R. Paramagnetic Moment Measurements by NMR
- Micro Technique. J. Chem. Educ. 1972, 49, 646–&.
(25) Piguet, C. Paramagnetic susceptibility by NMR: The “solvent cor-
rection” removed for large paramagnetic molecules. J. Chem. Educ.
1997, 74, 815–816.
(26) Vigouroux, C.; Belorizky, E.; Fries, P. H. NMR approach of the
electronic properties of the hydrated trivalent rare earth ions in solution.
Eur. Phys. J. D 1999, 5, 243–255.
(27) Corsi, D. M.; Platas-Iglesias, C.; van Bekkum, H.; Peters, J. A.
Determination of paramagnetic lanthanide(III) concentrations from bulk
Received for review December 4, 2009. Accepted March 9, 2010.
JE901031B