PHOSPHORUS, SULFUR, AND SILICON AND THE RELATED ELEMENTS
5
Carbon Monoxide-Free Aminocarbonylation of Aryl Iodides.
Magnetic Carbon Nanotubes (MagCNTs@SiO2)-Immobilized
imine-Cu(I). Appl. Organomet. Chem. 2014, 28, 101–108. doi:
Huang, Y.; Zhang, T. Aerobic Oxidative Coupling of Alcohols
and Amines over Au-Pd/Resin in Water: Au/Pd Molar Ratios
Switch the Reaction Pathways to Amides or Imines. Green
H.; Zhao, L.; Yuan, Y.; Xu, Z.; Chen, K.; Qiu, S.; Tan, H.
Potassium Thioacids Mediated Selective Amide and Peptide
Constructions Enabled by Visible Light Photoredox Catalysis.
(j) Valeur, E.; Bradley, M. Amide Bond Formation: Beyond the
Myth of Coupling Reagents. Chem. Soc. Rev. 2009, 38, 606–631.
Xia, X.; Ma, Y.; Yuan, R. Direct Oxidative Amidation of
Aldehydes with Amines Catalyzed by Heteropolyanion-Based
S. Aminocarbonylation of Aryl Halides Using
a Nickel
Phosphite Catalytic System. Org. Lett. 2007, 9, 4615–4618. doi:
€
Free Double Carbonylation of Iodobenzene in the Presence of
Reusable Supported Palladium Catalysts. J. Mol. Catal. A:
(h) Hosoi, K.; Nozaki, K.; Hiyama, T. Carbon Monoxide Free
Aminocarbonylation of Aryl and Alkenyl Iodides Using DMF
as an Amide Source. Org. Lett. 2002, 4, 2849–2851. doi:10.1021/
ol026236k. (i) Kumar, P. S.; Kumar, G. S.; Kumar, R. A.;
Reddy, N. V.; Rajender Reddy, K. Copper-Catalyzed Oxidative
Coupling of Carboxylic Acids with N,N-Dialkylformamides: An
Approach to the Synthesis of Amides. Eur. J. Org. Chem. 2013,
Zhang, Y.-H.; Shao, C.-D.; Yu, J.-X. Copper-Catalyzed Amide
Bond Formation from Formamides and Carboxylic Acids. Chin.
Priyadarshini, S.; Joseph, P. J. A.; Kantam, M. L. Copper
Catalyzed Cross-Coupling Reactions of Carboxylic Acids: An
Expedient Route to Amides, 5-Substituted Gamma-Lactams and
Alpha-Acyloxy Esters. RSC Adv. 2013, 3, 18283–18287. doi:
Xiang, J.-N.; Li, J.-H. Copper-Catalyzed Amidation of Acids
Using Formamides as the Amine Source. Eur. J. Org. Chem.
T.; Anki, T.; Ebi, T.; Konishi, A.; Matsumoto, K.; Kurata, H.;
Kawase, T. An Effective Synthesis of N,N-Dimethylamides from
Carboxylic Acids and a New Route from N,N-Dimethylamides
to 1,2-Diaryl-1,2-Diketones. Tetrahedron 2010, 66, 8968–8973.
Ionic Liquids under Solvent-Free Conditions via
a Dual-
Catalysis Process. Org. Biomol. Chem. 2016, 14, 1784–1793. doi:
ꢀ
[5] (a) Gooßen, L. J.; Rodrıguez, N.; Gooßen, K.; Carboxylic Acids
as Substrates in Homogeneous Catalysis. Angew. Chem. Int. Ed.
N.; Goossen, L. Decarboxylative Coupling Reactions: A Modern
Strategy for C–C-Bond Formation. J. Chem. Soc. Rev. 2011, 40,
Transition Metal-Catalyzed Decarboxylative Cross-Coupling
Reactions. Sci. China Chem. 2011, 54, 1670–1687. doi:10.1007/
Carboxylates as Sources of Carbon Nucleophiles and
Electrophiles:
comparison
of
Decarboxylative
and
Decarbonylative Pathways. Chem. Sci. 2012, 3, 2671–2678. doi:
Decarboxylative
(e)
Cornella,
J.;
Larrosa,
Bond-Forming
I.
Carbon-Carbon
[4] (a) Gao, L.; Tang, H.; Wang, Z. Oxidative Coupling of
Methylamine with an Aminyl Radical: direct Amidation
Catalyzed by I 2/TBHP with HCl. Chem. Commun. 2014, 50,
K.; Togo, H. Preparation of N,N-Dimethyl Aromatic Amides
from Aromatic Aldehydes with Dimethylamine and Iodine
1290659. (c) Ghosh, S. C.; Ngiam, J. S. Y.; Seayad, A. M.; Tuan,
D. T.; Chai, C. L. L.; Chen, A. Copper-Catalyzed Oxidative
Amidation of Aldehydes with Amine Salts: Synthesis of
Primary, Secondary, and Tertiary Amides. J. Org. Chem. 2012,
Li, X.; Jiang, H. Electrochemical Synthesis of Amides: direct
Transformation of Methyl Ketones with Formamides.
Metal-Free n-Bu4NI-Catalyzed Direct Synthesis of Amides from
Alcohols and N,N-Disubstituted Formamides. Tetrahedron Lett.
D.; Heydari, A. Oxidative Amidation of Aromatic Aldehydes
with Amine Hydrochloride Salts Catalyzed by Silica-Coated
Transformations of (hetero) Aromatic Carboxylic Acids.
ꢀ
Gooßen, L. J.; Gooßen, K.; Rodrıguez, N.; Blanchot, M.; Linder,
C.; Zimmermann, B. New Catalytic Transformations of
Carboxylic Acids. Pure Appl. Chem. 2008, 80, 1725–1733. doi:
T. Carbon Monoxide Free Aminocarbonylation of Aryl and
Alkenyl Iodides Using DMF as an Amide Source. Org. Lett.
ꢀ
[6] Ku€rti, L.; Czako, B. Strategic Applications of Named Reactions
in Organic Synthesis; Elsevier Inc.: Amsterdam, 2005.
[7] Bi, X.; Li, J.; Shi, E.; Wang, H.; Gao, R.; Xiao, J. Ru-Catalyzed
Direct Amidation of Carboxylic Acids with N-Substituted
Formamides. Tetrahedron 2016, 72, 8210–8214. doi:10.1016/
[8] (a) Ding, S.; Jiao, N.; N,N-Dimethylformamide: A Multipurpose
Building Block. Angew. Chem. Int. Ed. 2012, 51, 9226–9237.
(b)
Muzart,
J.
N,N-
Dimethylformamide: much More than a Solvent. Tetrahedron