6134
H-Glu-Val-Val-d-Phe-H. These free peptides were resolved cleanly by HPLC; in the l-Phe-H
peptide, 12% of the opposite diastereomer (d) was present, while in the d-Phe-H peptide, 26% of
l was present. Further racemization17 of the l-Phe-H peptide was not observed upon standing
overnight in TFA.
In conclusion, we have developed a general strategy for the synthesis of C-terminal peptide
aldehydes that relies on anchoring of amino acid-derived acetals through a BAL handle to a solid
support. Final peptide aldehydes were released with TFA±H2O (19:1), with concomitant cleavage
of the acetal moiety. Extension of this approach to trifunctional Na-Fmoc-amino acids with
appropriate TFA-labile side-chain protecting groups would give precursors to peptides with
C-terminal trifunctional aldehydes.
Acknowledgements
We are grateful to Annette Nordestgaard from Phytera Symbion for LC/MS analyses, and
Professor Fernando Albericio for valuable discussions. We thank the Leo Foundation (K.J.), the
Lundbeck Foundation (K.J.), and the NIH (GM 42722 to GB) for ®nancial support. J.K. was
supported by an NIH Biotechnology Training Grant (GM 08347).
References
1. McConnell, R. M.; Barnes, G. E.; Hoyng, C. F.; Gunn, J. M. J. Med. Chem. 1990, 33, 86±93.
2. Sarubbi, E.; Seneci, P. F.; Angelastro, M. R.; Peet, N. P.; Denaro, M.; Islam, K. FEBS Lett. 1993, 319, 253±256.
3. Semple, J. E.; Minami, N. K.; Tamura, S. Y.; Brunck, T. K.; Nutt, R. F.; Ripka, W. C. Bioorg. Med. Chem. Lett.
1997, 7, 2421±2426.
4. Shepherd, T. A.; Cox, G. A.; McKinney, E.; Tang, J.; Wakulchik, M.; Zimmerman, R. E.; Villarreal, E. C. Bioorg.
Med. Chem. Lett. 1996, 6, 2893±2896.
5. Fehrentz, J. A.; Paris, M.; Heitz, A.; Velek, J.; Winternitz, F.; Martinez, J. J. Org. Chem. 1997, 62, 6792±6796.
6. Murphy, A. M.; Dagnino Jr., R.; Vallar, P. L.; Trippe, A. J.; Sherman, S. L.; Lumpkin, R. H.; Tamura, S. Y.;
Webb, T. R. J. Am. Chem. Soc. 1992, 114, 3156±3157.
7. Pothion, C.; Paris, M.; Heitz, A.; Rocheblave, L.; Rouch, F.; Fehrentz, J. A.; Martinez, J. Tetrahedron Lett. 1997,
38, 7749±7752.
8. Jensen, K. J.; Alsina, J.; Songster, M. F.; Vagner, J.; Albericio, F.; Barany, G. J. Am. Chem. Soc. 1998, 120,
5441±5452.
9. The described conditions gave a good yield and clean product. More standard catalytic hydrogenolysis conditions
gave lower yields, and showed unreacted starting material and/or the formation of by-products. For example, H2
in the presence of Pd/C gave the desired product in only 22% yield after puri®cation. H2 in the presence of
Pd(OH)2 gave erratic results, with the range of product formed being 26±62%.
10. Fehrentz, J. A.; Castro, B. Synthesis 1983, 676±678.
11. Wen, J. J.; Crews, C. M. Tetrahedron: Asymmetry 1998, 9, 1855±1858.
12. Rodriguez, M.; Llinares, M.; Doulut, S.; Heitz, A.; Martinez, J. Tetrahedron Lett. 1991, 32, 923±926.
13. Other conditions tried include (with the associated problems): piperidine:DMF (1:4), dicult to remove
piperidine; 5 equiv. aq. NaOH in THF for 3 h, incomplete reaction; 5 equiv. aq. NaOH in 1,4-dioxane for 3 h,
solubility problems, dicult to reproduce, loss during work up; ammonium formate in the presence of Pd/C in
MeOH±dioxane (1:1) under argon, no reaction after 1 day; DBU in EtOAc at 70ꢀC for 3 h, amino acetal could not
be isolated.
14. Optical rotation for the phenylalaninal dimethyl acetal was [ꢀ]D ^32.6 (c 1.5, MeOH, at 21ꢀC); lit. [ꢀ]D ^27.2 (c 1.6,
MeOH), Gacek, M.; Undheim, K. Tetrahedron 1974, 30, 4233±4237.
15. The purities (HPLC, 265/220 nm) and m/z of the Fmoc-protected crude peptide aldehydes were: (from dimethyl
acetals) Glu-Val-Lys-Phe-H 50%, 728.6 [M+H]+; Asp-Phe-Val-Ala-H, 54%, 657.4 [M+H]+; Ala-Ala-Pro-Ala-H,