LETTER
Carboniolamide Synthesis
2647
(5) (a) Rowland, G. B.; Zhang, H.; Rowland, E. B.;
spontaneous precipitation. At this point, no further purifi-
cation such as recrystallization or chromatography was re-
quired, and the yield remained at the same level.
Chennamadhavuni, S.; Wang, Y.; Antilla, J. C. J. Am. Chem.
Soc. 2005, 127, 15696. (b) Liang, Y.; Rowland, E. B.;
Rowland, G. B.; Perman, J. A.; Anilla, J. C. Chem. Commun.
2007, 4477.
(6) Cheng, X.; Vellalath, S.; Goddard, R.; List, B. J. Am. Chem.
Soc. 2008, 130, 15786.
(7) Rueping, M.; Antonchick, A. P.; Sugiono, E.; Grenader, K.
Angew. Chem. Int. Ed. 2009, 48, 908.
(8) Honjo, T.; Phipps, R. J.; Rauniyar, V.; Toste, F. D. Angew.
Chem. Int. Ed. 2012, 51, 9684.
(9) Cheng, D.-J.; Tian, Y.; Tian, S.-K. Adv. Synth. Catal. 2012,
354, 995.
(10) Guggenheim, K. G.; Toru, H.; Kurth, M. J. Org. Lett. 2012,
14, 3732.
(11) Alix, A.; Lalli, C.; Retailleau, P.; Masson, G. J. Am. Chem.
Soc. 2012, 134, 10389.
(12) Huang, D.; Li, X.; Xu, F.; Li, L.; Lin, X. ACS Catal. 2013,
3, 2244.
(13) (a) Li, G.; Fronczek, F. R.; Antilla, J. C. J. Am. Chem. Soc.
2008, 130, 12216. (b) Courant, T.; Masson, G. Chem. Eur. J.
2012, 18, 423. (c) Hashimoto, T.; Naktsu, H.; Takiguchi, Y.;
Maruoka, K. J. Am. Chem. Soc. 2013, 135, 16010. (d) Li, T.-
Z.; Wang, X.-B.; Sha, F.; Wu, X.-Y. Tetrahedorn 2013, 69,
7314. (e) Kim, H.; Rhee, Y. H. J. Am. Chem. Soc. 2012, 134,
4011.
(14) Vellalath, S.; Coric, I.; List, B. Angew. Chem. Int. Ed. 2010,
49, 9749.
(15) (a) Coric, I.; List, B. Nature (London) 2012, 483, 7389.
(b) Kim, J. H.; Coric, I.; Vellalath, S.; List, B. Angew. Chem.
Int. Ed. 2013, 52, 16.
(16) Sun, Z.; Winschel, G. A.; Borovika, A.; Nagorny, P. J. Am.
Chem. Soc. 2012, 134, 8074.
(17) Wu, H.; He, Y.-P.; Gong, L. Z. Org. Lett. 2013, 15, 460.
(18) Palmes, J. A.; Paioti, P. H. S.; Souza, L. P.; Aponick, A.
Chem. Eur. J. 2013, 19, 11613.
(19) Smith, A. B. III.; Safovo, I. G.; Corbett, R. M. J. Am. Chem.
Soc. 2001, 123, 12426.
(20) Hoye, T. R.; Hu, M. J. Am. Chem. Soc. 2003, 125, 9576.
(21) Kiren, S.; Shangguan, N.; Williams, L. Tetrahedron Lett.
2007, 48, 7456.
Scheme 4 The catalytic synthesis of carboniolamide on a 20-gram
scale
In summary, we have discovered that Brønsted acid can
catalyze the nucleophilic addition of amide to the alde-
hyde to form the carboniolamide as a stable compound
where α-oxygen adopting sp3 hybridization is necessary to
stabilize the generated hydroxyl group. The chemistry can
be extended to sulfonamide. This simple procedure could
be scaled up to 20 grams. We are now working on the en-
antioselective construction of carboniolamide.
Acknowledgment
This work was supported by the National Science Fund for Talent
Training in Basic Science (Grant No. J1103310), the Ph.D. Pro-
grams Foundation of Ministry of Education of China (Grant
20130091120047), and NSFC key Program (Grant 21332005). A
scholarship for Z.Y. (SRTP Grant G1310284037) is highly appre-
ciated.
(22) Gaich, T.; Baran, P. S. J. Org. Chem. 2010, 75, 4657.
(23) Uenishi, J.; Iwamoto, T.; Tanaka, J. Org. Lett. 2009, 11,
3262.
(24) Cheng, X.; Ghosh, A. K. Org. Lett. 2011, 13, 4108.
(25) (a) Bussolari, J. C.; Beers, K.; lalan, P.; Murray, W. V.;
Gauthier, D.; McDonnell, P. Chem. Lett. 1998, 27, 787.
(b) Troast, D. M.; Porco, J. A. Jr. Org. Lett. 2002, 4, 991.
(26) Zhang, Y.; Zhong, Z. H.; Han, Y. M.; Han, R. R.; Cheng, X.
Tetrahedron 2013, 69, 11080.
(27) For some examples of the functional group assisted
purification, see: (a) Pindi, S.; Wu, J.; Li, G. J. Org. Chem.
2013, 76, 4006. (b) Sun, H.; Zhang, H.; Han, J.; Pan, Y.; Li,
G. Eur. J. Org. Chem. 2013, 22, 4744.
(28) General Procedure for the Synthesis of the
Carboniolamide: To a reaction vial charged with amide (1.0
mmol), glyoxylate (1.0 mmol), and diphenyl hydrogen
phosphate (25.0 mg, 0.1 mmol) was added Et2O (4 mL).
Then the sealed reaction mixture was stirred at r.t. for the
specified time. The obtained slurry was then filtered, and the
precipitate was washed with a minimum amount of cold
Et2O to give the compound as a white powder.
1g: mp 106.2–108.1 °C. 1H NMR (400 MHz, DMSO-d6):
δ = 9.46 (d, J = 7.8 Hz, 1 H), 7.92 (d, J = 8.5 Hz, 2 H), 7.56
(d, J = 8.5 Hz, 2 H), 6.63 (d, J = 6.1 Hz, 1 H), 5.64 (t, J = 6.9
Hz, 1 H), 4.15 (q, J = 7.1 Hz, 2 H), 1.21 (t, J = 7.1 Hz, 3 H).
13C NMR (101 MHz, DMSO-d6): δ = 170.26, 165.43,
Supporting Information for this article is available online
at
10.1055/s-00000083.SunpfgIpi
o
o
nr
i
References and Notes
(1) Iwasawa, T.; Hooley, R. J.; Rebek, J. Science 2007, 317,
493.
(2) Tanaka, J.; Higa, T. Tetrahedron Lett. 1996, 37, 5535.
(3) (a) Field, J. J.; Singh, A. J.; Kanakkanthara, A.; Halafihi, T.;
Northcote, P. T.; Miller, J. H. J. Med. Chem. 2009, 52, 7328.
(b) Ghosh, A. K.; Cheng, X.; Bai, R.; Hamel, E. Eur. J. Org.
Chem. 2012, 4130. (c) Zurwerra, D.; Glaus, F.; Betschart,
L.; Schuster, J.; Gertsch, J.; Ganci, W.; Altmann, K.-H.
Chem. Eur. J. 2012, 18, 16868. (d) Field, J. J.; Pear, B.;
Calvo, E.; Canales, A.; Zurwerra, D.; Trigili, C.; Rodriguez-
Salarichs, J.; Matesanz, R.; Kanakkanthara, A.; Wakefield,
J.; Singh, A. J.; Altmann, K.-H.; Diaz, J. F. Chem. Biol.
2012, 19, 686.
(4) Prota, A. E.; Bargsten, K.; Zurwerra, D.; Field, J. J.; Diaz, J.
F.; Altmann, K.-H.; Steinmetz, M. O. Science 2013, 339,
587.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2014, 25, 2644–2648