Organic Letters
Letter
Scheme 3. Diels−Alder Reaction of Substituted Oxatrienes
REFERENCES
■
a e
−
3a−c,j with Illustrative Dienophiles 4a−d
(1) (a) de Benneville, P. L.; Connor, R. J. Am. Chem. Soc. 1940, 62, 283.
(b) Griffiths, D. V.; Wilcox, G. J. Chem. Soc., Perkin Trans. 2 1988, 431.
(c) Hanaki, N.; Ishihara, K.; Kaino, M.; Naruse, Y.; Yamamoto, H.
Tetrahedron 1996, 52, 7297. (d) Ishihara, K.; Hanaki, N.; Yamamoto, H.
J. Chem. Soc., Chem. Commun. 1995, 1117. (e) Jones, D. N.; Khan, M. A.;
Mirza, S. M. Tetrahedron 1999, 55, 9933.
(2) (a) Wang, X.; Fang, T.; Tong, X. Angew. Chem., Int. Ed. 2011, 50,
5361. (b) Yang, H.-B.; Yuan, Y.-C.; Wei, Y.; Shi, M. Chem. Commun.
2015, 51, 6430. (c) Yao, W.; Dou, X.; Lu, Y. J. Am. Chem. Soc. 2015, 137,
54. (d) Zhang, S.; Luo, Y.-C.; Hu, X.-Q.; Wang, Z.-Y.; Liang, Y.-M.; Xu,
P.-F. J. Org. Chem. 2015, 80, 7288. (e) Ashtekar, K. D.; Staples, R. J.;
Borhan, B. Org. Lett. 2011, 13, 5732.
(3) (a) Huang, G. T.; Lankau, T.; Yu, C. H. J. Org. Chem. 2014, 79,
1700. (b) Evans, C. A.; Miller, S. J. J. Am. Chem. Soc. 2003, 125, 12394.
(4) The sequence of events highlighted in path B is akin to the Baylis−
Hillman reaction (thus referred to as the modified BH) that has been
interrupted with an intramolecular cyclization, prior to the elimination of
the amine catalyst, which regenerates the olefin.
(5) (a) Agopcan, S.; Celebi-Olcum, N.; Ucisik, M. N.; Sanyal, A.;
Aviyente, V. Org. Biomol. Chem. 2011, 9, 8079. (b) Atta-ur-Rahman;
Shah, Z. Stereoselective Synthesis in Organic Chemistry, 1st ed.; Springer-
Verlag: New York, 1993. (c) Fisher, M. J.; Hehre, W. J.; Kahn, S. D.;
Overman, L. E. J. Am. Chem. Soc. 1988, 110, 4625. (d) Galley, G.; Patzel,
M. J. Chem. Soc., Perkin Trans. 1 1996, 2297. (e) Gleiter, R.; Paquette, L.
A. Acc. Chem. Res. 1983, 16, 328. (f) Hamada, T.; Sato, H.; Hikota, M.;
Yonemitsu, O. Tetrahedron Lett. 1989, 30, 6405. (g) Nicolaou, K. C.;
Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem., Int.
Ed. 2002, 41, 1668. (h) Siegel, C.; Thornton, E. R. Tetrahedron Lett.
1988, 29, 5225. (i) Tripathy, R.; Carroll, P. J.; Thornton, E. R. J. Am.
Chem. Soc. 1990, 112, 6743.
(6) (a) Giuliano, R. M.; Jordan, A. D.; Gauthier, A. D.; Hoogsteen, K. J.
Org. Chem. 1993, 58, 4979. (b) Jin, Z.; Yang, R.; Du, Y.; Tiwari, B.;
Ganguly, R.; Chi, Y. R. Org. Lett. 2012, 14, 3226. (c) Kirillov, N. F.;
Gavrilov, A. G.; Slepukhin, P. A.; Vakhrin, M. I. Russ. J. Org. Chem. 2013,
49, 717.
a
Diels−Alder reaction conditions for each dienophile are as follows:
dienophile 4a, 0.1 M toluene, reflux, 2−16 h; dienophile 4b, 0.1 M
toluene, reflux, 2 h; dienophile 4c, 0.1 M EtOH/DCM (1:1), 0 °C →
b
rt, 12 h; dienophile 4d, 0.1 M in toluene, reflux, 12 h. Diastereomeric
ratios (dr) were determined by 1H NMR analysis of the crude reaction
c
(7) (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56,
2257. (b) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
(c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (d) Becke, A. D. J. Chem.
Phys. 1993, 98, 1372. (e) Raghavachari, K. Theor. Chem. Acc. 2000, 103,
361.
mixture. Regioselectivity (rs) and relative stereochemistry were
d
determined via NMR analysis of the purified product. Isolated yields.
e
Isolated yields for “one pot” consecutive transformations from 1a as a
starting material.
(8) Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650.
(9) (a) Lewars, E. G. Computational Chemistry: Introduction to the
Theory and Applications of Molecular and Quantum Mechanics, 2nd ed.;
Springer-Verlag: New York, 2011; p 1. (b) Wise, K. E.; Wheeler, R. A. J.
Phys. Chem. A 1999, 103, 8279.
(10) An exhaustive analysis at the MP2 level of theory can be attempted
(requires longer time and higher computational expense) to capture the
precise energetics in the Diels−Alder reaction; however, our approach
utilizes the B3LYP/6-31G*analysis to map the reaction pathway and
compare the relative energies of the transition states involved at a
relatively low computational expense.
(11) The final ESI-MS spectrum displayed the same peaks regardless of
the order of addition of 1a, 2, and C. MS spectra obtained at longer time
points depict the anticipated difference in relative intensities of the
intermediates as the reaction progresses to yield more product.
Futhermore, for simplicity, Figure 2 depicts adducts that arise only
from γ-attack of the allene ester, whereas the actual mixture may
comprise equilibrating intermediates formed via γ and α attack.
(12) We have also explored the Baylis−Hillman reaction with
unsymmetrically substituted enones. The resulting products obtained
with modest selectivity of 2:3 were inseparable by analytical techniques
details).
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental and DFT computational data (PDF)
X-ray crystallographic data for 5ba (CIF)
X-ray crystallographic data for 5ja (CIF)
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
†K.D.A. and X.D. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Generous support was provided by the NIH (GM110525). We
are grateful to Dr. Daniel Holmes and Dr. Li Xie (MSU) for
assistance on NMR experiments.
D
Org. Lett. XXXX, XXX, XXX−XXX