10.1002/anie.201710271
Angewandte Chemie International Edition
COMMUNICATION
Stahl, J. Am. Chem. Soc. 2013, 135, 6415-6418; (g) J. Zhang, E.
Khaskin, N. P. Anderson, P. Y. Zavalij, A. N. Vedernikov, Chem.
Commun. 2008, 3625-3627; (h) X. Chen, X.-S. Hao, C. E. Goodhue,
J.-Q. Yu, J. Am. Chem. Soc. 2006, 128, 6790-6791; (i) B.-J. Li, S.-L.
Tian, Z. Fang, Z.-J. Shi, Angew. Chem. Int. Ed. 2008, 47, 1115-
1118; (j) B. Xu, E. M. Hartigan, G. Feula, Z. Huang, J.-P. Lumb, B.
A. Arndtsen, Angew. Chem. Int. Ed. 2016, 55, 15802-15806.
For a selection of selective C-H oxidation reactions using H2O2 see:
(a) R. Trammell, Y. Y. See, A. T. Herrmann, N. Xie, D. E. Díaz, M. A.
Siegler, P. S. Baran, I. Garcia-Bosch, J. Org. Chem. 2017, 82, 7887-
7904; (b) M. Milan, M. Bietti, M. Costas, ACS Cent.Sci. 2017, 3, 196-
204; (c) T. J. Osberger, D. C. Rogness, J. T. Kohrt, A. F. Stepan, M.
C. White, Nature 2016, 537, 214-219.
McCann, J.-P. Lumb, B. A. Arndtsen, S. S. Stahl, ACS Cent. Sci.
2017, 3, 314-321. For the oxidation of amines, see ref. 7j. For the
oxidation of low valent metals, see: (c) M. Glavinović, M. Krause, L.
Yang, J. A. McLeod, L. Liu, K. M. Baines, T. Friščić, J.-P. Lumb, Sci.
Adv. 2017, 3, e1700149; (d) M. Glavinovic, F. Qi, A. D. Katsenis, T.
Friscic, J.-P. Lumb, Chem. Sci. 2016, 7, 707-712.
(a) L. Bezalel, Y. Hadar, P. P. Fu, J. P. Freeman, C. E. Cerniglia,
Appl. Environ. Microbiol. 1996, 62, 2547-2553; (b) W. Levin, A. W.
Wood, R. L. Chang, Y. Ittah, M. Croisy-Delcey, H. Yagi, D. M.
Jerina, A. H. Conney, Cancer Res. 1980, 40, 3910-3914.
(a) H. Hopf, J. Hucker, L. Ernst, Eur. J. Org. Chem. 2007, 2007,
1891-1904; (b) K. Usui, K. Yamamoto, T. Shimizu, M. Okazumi, B.
Mei, Y. Demizu, M. Kurihara, H. Suemune, J. Org. Chem. 2015, 80,
6502-6508; (c) A. Wu, Y. Duan, D. Xu, T. M. Penning, R. G. Harvey,
Tetrahedron 2010, 66, 2111-2118; (d) D. Xu, T. M. Penning, I. A.
Blair, R. G. Harvey, J. Org. Chem. 2009, 74, 597-604; (e) R.
Yamaguchi, S. Hiroto, H. Shinokubo, Org. Lett. 2012, 14, 2472-
2475.
[16]
[17]
[8]
[9]
Y.-R. Luo, in Handbook of Bond Dissociation Energies in Organic
Compounds, CRC Press, 2002.
(a) W. Brackman, E. Havinga, Recl. Trav. Chim. Pays-Bas 1955, 74,
937-955; (b) M. Rolff, J. Schottenheim, H. Decker, F. Tuczek, Chem.
Soc. Rev. 2011, 40, 4077-4098.
[10]
[11]
[12]
[13]
(a) A. Hoffmann, C. Citek, S. Binder, A. Goos, M. Rübhausen, O.
Troeppner, I. Ivanović-Burmazović, E. C. Wasinger, T. D. P. Stack,
S. Herres-Pawlis, Angew. Chem. Int. Ed. 2013, 52, 5398-5401; (b) J.
N. Hamann, F. Tuczek, Chem. Commun. 2014, 50, 2298-2300; (c)
M. Rolff, J. Schottenheim, G. Peters, F. Tuczek, Angew. Chem. Int.
Ed. 2010, 49, 6438-6442.
(a) K. V. N. Esguerra, J.-P. Lumb, Synlett 2015, 26, 2731-2738; (b)
M. S. Askari, L. A. Rodriguez-Solano, A. Proppe, B. McAllister, J. P.
Lumb, X. Ottenwaelder, Dalton Trans. 2015, 44, 12094-12097; (c) K.
V. N. Esguerra, Y. Fall, J.-P. Lumb, Angew. Chem. Int. Ed. 2014, 53,
5877-5881; (d) K. V. Esguerra, Y. Fall, L. Petitjean, J. P. Lumb, J.
Am. Chem. Soc. 2014, 136, 7662-7668.
For a detailed mechanistic analysis of oxygen atom transfer in the
DBED-system, see: (a) M. S. Askari, K. V. Esguerra, J. P. Lumb, X.
Ottenwaelder, Inorg. Chem. 2015, 54, 8665-8672; (b) L. M. Mirica,
M. Vance, D. J. Rudd, B. Hedman, K. O. Hodgson, E. I. Solomon, T.
D. P. Stack, Science 2005, 308, 1890-1892; (c) B. T. Op't Holt, M. A.
Vance, L. M. Mirica, D. E. Heppner, T. D. P. Stack, E. I. Solomon, J.
Am. Chem. Soc. 2009, 131, 6421-6438.
(a) Z. Huang, J.-P. Lumb, Angew. Chem., Int. Ed. 2016, 55, 11543-
11547; (b) Z. Huang, M. S. Askari, K. V. N. Esguerra, T.-Y. Dai, O.
Kwon, X. Ottenwaelder, J.-P. Lumb, Chem. Sci. 2016, 7, 358-369;
(c) K. V. N. Esguerra, J.-P. Lumb, ACS Catal. 2017, 7, 3477-3482;
(d) K. V. N. Esguerra, W. Xu, J.-P. Lumb, Chem 2017, 2, 533-549;
(e) K. V. N. Esguerra, J.-P. Lumb, Chem.—Eur. J. 2017, 23, 8596-
8600.
[18]
[19]
Calculations were conducted at the B3LYP/6-31G* level. See
Supporting Information for details.
(a) D. W. Jones, A. Pomfret, J. Chem. Soc., Perkin Trans. 1 1991,
13-18; (b) V. Horak, F. V. Foster, R. de Levie, J. W. Jones, P.
Svoronos, Tetrahedron Lett. 1981, 22, 3577-3578.
For a recent review on the use of ortho-quinones in catalysis, see: A.
E. Wendlandt, S. S. Stahl, Angew. Chem. Int. Ed. 2015, 54, 14638-
14658.
(a) J. Qian, W. Yi, X. Huang, Y. Miao, J. Zhang, C. Cai, W. Zhang,
Org. Lett. 2015, 17, 1090-1093; (b) Y. Izawa, D. Pun, S. S. Stahl,
Science 2011, 333, 209-213.
(a) J. García-Amorós, D. Velasco, Beilstein J. Org. Chem. 2012, 8,
1003-1017; (b) J. Garcia-Amorós, D. Velasco, in Tautomerism,
Wiley-VCH Verlag GmbH & Co. KGaA, 2016, pp. 253-272.
N. Khunnawutmanotham, P. Sahakitpichan, N. Chimnoi, S.
Techasakul, Eur. J. Org. Chem. 2015, 2015, 6324-6332.
J. L. Neumeyer, in The Chemistry and Biology of Isoquinoline
Alkaloids (Eds.: J. D. Phillipson, M. F. Roberts, M. H. Zenk),
Springer Berlin Heidelberg, Berlin, Heidelberg, 1985, pp. 146-170.
M. Lafrance, N. Blaquiere, K. Fagnou, Eur. J. Org. Chem. 2007,
2007, 811-825.
[20]
[21]
[22]
[23]
[24]
[14]
[15]
[25]
For the oxidation of alcohols, see: (a) B. Xu, J.-P. Lumb, B. A.
Arndtsen Angew. Chem. Int. Ed. 2015, 54, 4208-4211 (b) S. D.
This article is protected by copyright. All rights reserved.