TABLE 1. Spectroscopic Characteristics of the 5-Arylisoquino-
[2,3-a]quinazoline derivatives 4, 5a-d, 7a,b
1Н NMR spectrum, δ, ppm (J, Hz)
IR spectrum,
Com-
pound
ν, cm-1
1H, s, 1H, s,
Н-12 Н-7
ArH
4
1615 (C=N),
1555, 1500,
1440, 1420,
1355, 1090,
760, 625
9.36 (1Н, d, 3J = 9.0, Н-1); 8.75 (1Н, d, 3J = 8.4, Н-11); 11.41 9.28
8.69 (1Н, dd, 3J = 9.0, 4J = 1.2, Н-2);
8.54 (1Н, d, 3J = 8.0, Н-8); 8.33 (1Н, t, 3J = 8.0, Н-9);
8.19 (1Н, d, 4J = 1.2, Н-4); 8.17 (1Н, t, 3J = 8.0, Н-10);
7.93 (2Н, m, H-2',6'); 7.75 (3Н, m, H-4',3',5')
5a
5b
1615 (C=N),
1595, 1550,
1400, 1350
(NO2), 1100,
660
9.45 (1Н, d, 3J = 9.0, Н-1); 8.99 (1Н, d, 3J = 8.4, Н-11); 11.80
—
—
8.70 (1Н, dd, 3J = 9.0, 4J = 2.0, Н-2);
8.24 (2Н, m, Н-4,10); 8.16 (3Н, m, Н-9,3',5');
8.00 (1Н, d, 3J = 8.0, Н-8); 7.56 (2Н, d, 3J = 8.8, H-2',6')
1600 (C=N),
1585, 1540,
1500, 1420,
1395, 1350,
1090, 620
9.37 (1Н, d, 3J = 9.0, Н-1); 8.96 (1Н, d, 3J = 8.4, Н-11); 11.73
8.76 (1Н, dd, 3J = 9.0, 4J = 2.0, Н-2);
8.30 (1Н, d, 4J = 2.0, Н-4); 8.26 (1Н, t, 3J = 8.0, Н-10);
8.18 (1Н, t, 3J = 8.0, Н-9); 8.00 (1Н, d, 3J = 8.0, Н-8);
7.56 (2Н, t, 3J = 8.8, H-3',5');
7.18 (2Н, d, 3J = 8.8, H-2',6')
5c
1615 (C=N),
1595, 1550,
9.49 (1Н, d, 3J = 9.0, Н-1); 8.98 (1Н, d, 3J = 8.4, Н-11); 11.73
—
—
8.56 (1Н, dd, 3J = 9.0, 4J = 2.0, Н-2);
8.26 (1Н, t, 3J = 8.0, Н-10); 8.17 (1Н, t, 3J = 8.0, Н-9);
8.14 (1Н, d, 4J = 2.0, Н-4); 8.06 (1Н, d, 3J = 8.0, Н-8);
7.48 (1Н, t, 3J = 7.6, H-4'); 7.35 (2Н, t, 3J = 7.6, H-3',5');
7.22 (2Н, d, 3J = 7.6, H-2',6')
1500, 1395,
1350, 1090,
620
5d*
1610 (C=N),
1595, 1545,
1500, 1425,
1390, 1345,
1090, 620
9.44 (1Н, d, 3J = 9.0, Н-1); 8.99 (1Н, d, 3J = 8.4, Н-11); 11.73
8.78 (1Н, dd, 3J = 9.0, 4J = 2.0, Н-2);
8.31 (1Н, d, 4J = 2.0, Н-4); 8.25 (1Н, t, 3J = 8.0, Н-10);
8.16 (1Н, t, 3J = 8.0, Н-9); 8.04 (1Н, d, 3J = 8.0, Н-8);
7.14 (2Н, t, 3J = 8.8, H-2',6');
7.12 (2Н, d, 3J = 8.8, H-3',5')
7a
7b
1665 (С=N),
1595, 1540,
1485, 770
7.69 (1Н, d, 3J = 7.8, Н-2);
5.08,
2H
5.5
5.5
7.66 (2Н, d, 3J = 9.0, H-2',6');
7.50 (4Н, m, H-1, H-1,3'–5');
7.04-6.96 (4Н, m, Н-1,8,10,11); 6.89 (1Н, t, 3J = Н-9)
1660 (С=N),
1590, 1535,
1485, 770
7.71 (1Н, d, 3J = 7.8, Н-2);
5.02,
2H
7.64 (2Н, d, 3J = 9.0, H-2',6'); 7.48 (3Н, m, H-1,3',5');
7.14 (1Н, s, Н-4); 7.09-6.96 (3Н, m, Н-8,10,11);
6.90 (1Н, t, 3J = Н-9)
_______
* A signal is observed at 2.28 ppm (3H, s, CH3) in the 1H NMR spectrum.
cases. We have carried out a detailed comparative analysis of the spectroscopic characteristics of these
compounds and the model compound 6-methyl-5-oxo-5,6-dihydroisoquino[2,3-a]quinazolin-13-ium perchlorate
(6) (the structure of which has been established before [13]) in order to confirm the structures of the oxidation
products.
1
With this in mind we measured their H and 13C NMR spectra (Table 1) and also used homonuclear
(COSY) and heteronuclear (HMBC and HMQC) 2D correlation spectroscopy. In addition, we have recorded
their NOESY 1D and NOESY spectra to measure the steric proximity of individual protons. The data for the
heteronuclear correlation for the aryl derivatives 4, 5c,d and the simpler compound 6 are given in Table 2. The
available data allows us to perform a full assignment of signals in the proton and carbon spectra and to draw
conclusions regarding the structure of the compound studied. Figure 1 shows the assignments of signals and the
arrows depict the structurally significant HMBC correlations. Hence for compound 6 the proton with a chemical
332