6020
2. (a) Kelly, S. E.; LaCour, T. G. Synthetic Communications 1992, 22, 859. (b) Smith, M. Tetrahedron Lett. 1989, 30,
313. (c) Rosen, T.; Watanabe, M.; Heathcock, C. H. J. Org. Chem. 1984, 49, 3657. (d) Wissner, A.; Grudzinskas,
C. V. J. Org. Chem. 1978, 43, 3972.
3. No attempts were made to determine the enantiopurity of 4.
4. Toyooka, K.; Takeuchi, Y.; Kubota, S. Heterocycles 1989, 29, 975.
5. Khalij, A.; Nahid, E. Synthesis 1985, 1153.
6. Konig, W.; Geiger, R. Chem. Ber. 1970, 103, 788.
7. Staab, H. A. Liebigs Ann. Chem. 1957, 609, 75.
8. Bates, A. J.; Galpin, I. J.; Hallett, A.; Hudson, D.; Kenner, G. W.; Ramage, R. Helv. Chim. Acta 1975, 58, 688.
9. Belleau, D.; Malek, G. J. Amer. Chem. Soc. 1968, 90, 1651.
10. (a) Vaughan Jr., J. R.; Osato, R. L. J. Amer. Chem. Soc. 1951, 73, 5553. (b) Zaoral, M. Coll. Czech. Chem.
Commun. 1962, 27, 1273.
11. Shin, J. M.; Kim, Y. H. Tetrahedron Lett. 1986, 27, 1921. The acids used in this study were racemic with the
exception of d-tartaric acid. In this case, the enantiomeric purities of the product amides were not reported.
12. Kim, Y. H.; Shin, J. M. Tetrahedron Lett. 1985, 26, 3821.
13. 1,2,4-Triazole was added to a mixture of the hydroxy acid 2 and N-sul®nylaniline 7 in CD2Cl2 in an NMR tube. A
1
new peak was observed by H NMR at ꢀ 4.2, which, by CS Chem Draw Pro, estimates were suggestive of an
intermediate such as 8 (methine proton). This peak was not observed in the absence of 1,2,4-triazole.
14. All new compounds were fully characterized by NMR, HRMS and/or CHN analysis. Chiral purity of compounds
was determined using chiral HPLC: Chiralpack AD, 4.6Â250 mm ID, 10 mM particle diameter column; 95%
1
hexane/5% isopropanol as mobile phase. Compound 2: H NMR (CDCl3, 500 MHz) ꢀ 1.25±1.27 (overlapping
singlets, 12H), 1.67 (s, 4H), 5.19 (s, 1H), 7.17 (dd, J=8, 2 Hz, 1H), 7.30 (d, J=8 Hz, 1H), 7.35 (d, J=2 Hz, 1H).
1
Elemental analysis: theoretical: C=73.05, H=8.45; found: C=73.25; H=8.36. Compound 7: H NMR (CDCl3,
500 MHz) ꢀ 3.93 (s, 3H), 7.80±7.90 (m, 2H), 8.14 (dd, J=8, 8 Hz, 1H) HRMS: calculated: 215.0052; found:
215.0052. Compound 9: 1H NMR (CDCl3, 500 MHz) ꢀ 1.25±1.30 (overlapping singlets, 12H), 1.68 (s, 4H), 3.51 (d,
J=2 Hz, 1H), 3.89 (s, 3H), 5.17 (d, J=2 Hz, 1H), 7.22 (dd, J=8, 2 Hz, 1H), 7.33 (d, J=8 Hz, 1H), 7.4 (d, J=2 Hz,
1H), 7.75 (dd, J=11, 2 Hz, 1H), 7.80 (d, J=11 Hz, 1H), 8.44 (apparent t, J=8 Hz, 1H), 8.86 (d, J=2 Hz, 1H)
1
HRMS (M+H): calculated: 414.2081; found: 414.2066. Compound 10: H NMR (CDCl3, 300 MHz) ꢀ 3.34 (d,
J=3.Hz, 1H), 3.9 (s, 3H), 5.26 (d, J=3 Hz, 1H), 7.3±7.45 (m, 3H), 7.46±7.55 (m, 2H), 7.76 (dd, J=11, 2 Hz, 1H),
7.81 (d, J=8 Hz, 1H), 8.45 (t, J=8.1 Hz, 1H), 8.81 (broad s, 1H) HRMS: calculated: 303.0907; found: 303.0940.
Compound 11: 1H NMR (CDCl3, 300 MHz) ꢀ 2.61 (d, J=4 Hz, 1H), 2.97 (dd, J=14, 9 Hz, 1H), 3.38 (dd, J=14, 4
Hz, 1H), 3.91 (s, 3H), 4.48 (ddd, J=9, 4, 4 Hz, 1H), 7.19±7.4 (m, 5H), 7.76 (dd, J=12, 2 Hz, 1H), 7.85 (d, J=9 Hz,
1H), 8.53 (apparent t, J=8 Hz, 1H), 8.89 (broad s, 1H) HRMS: calculated: 317.1063; found: 317.1064. Compound
1
12: H NMR (CDCl3, 300 MHz) ꢀ 7.93 (d, J=9 Hz, 2H), 8.30 (d, J=9 Hz, 2H) HRMS: calculated: 303.0907;
1
found: 303.0940. Compound 13: H NMR (DMSO-d6, 300 MHz) ꢀ 2.9 (dd, J=14, 8 Hz, 1H), 3.09 (dd, J=14, 4
Hz, 1H), 4.34 (m, 1H), 6.02 (broad d, J=5 Hz, 1H), 7.19±7.35 (m, 5H), 8.01 (d, J=9 Hz, 2H), 8.25 (d, J=9 Hz,
1
2H), 10.39 (s, 1H) HRMS: calculated: 286.0954; found: 286.0946. Compound 14: H NMR (CDCl3, 300 MHz) ꢀ
7.30 (dd, J=9, 2 Hz, 1H), 7.53 (d, J=2 Hz, 1H), 8.35 (d, J=9 Hz, 1H) HRMS: calculated: 206.9312; found:
206.9318. Compound 15: 1H NMR (CDCl3, 300 MHz) ꢀ 1.2±1.3 (overlapping s, 12H), 1.68 (s, 4H), 3.22 (broad s,
1H), 5.19 (s, 1H), 7.2±7.3 (m, 2H), 7.3±7.41 (m, 1H), 8.35 (d, J=9 Hz, 1H), 8.77 (broad s, 1H) HRMS: calculated
(using 37Cl): 407.1262; found: 407.1226.
15. A general procedure for preparing N-sul®nylanilines from the corresponding aniline is described in Ref. 12.