possibility of forming 1,2-benzothiazines 3 (or benzoisothia-
zoles 4) using the chemistry illustrated in Scheme 1.8 1,2-
Benzothiazines are of pharmaceutical interest, and a new
general procedure for their synthesis opens the door for the
creation of libraries of diversely functionalized compounds
that may prove to be of value as leads in drug develop-
ment.9,10 From a more fundamental perspective, the nucleo-
philicity of the sulfoximine nitrogen atom is of general
interest and further exploration of its reactivity is needed.11
This Letter describes our successful initial exploration of the
synthesis of 1,2-benzothiazines and 1,2-benzoisothiazoles
using chemistry represented in Scheme 1.
Scheme 2
In the course of our studies of the Sonogashira coupling,
we found that treatment of 8 with terminal alkynes in the
presence of Pd(PPh3)2Cl2, CuI, and triethylamine in warm
DMF afforded 1,2-benzothiazines directly and in good yield,
along with 1,2-benzoisothiazoles resulting from a 5-exo-dig
cyclization.
The results of our study are shown in Table 1. Alkyl-
substituted terminal alkynes afforded benzothiazines 9 in 53-
Our approach was inspired by the work of Snieckus and
Lane, who showed that ortho-iodosulfonamide 5 could
undergo a Sonogashira coupling to form 6, which could be
converted to benzoisothiazole 7 upon exposure to sodium
hydride (Scheme 2).12 We began our studies with the racemic
bromosulfoximine 8, easily prepared from 2-bromothio-
phenol using literature procedures (see Supporting Informa-
tion). We planned to conduct a Sonogashira coupling with
8 and then attempt an electrophile-mediated cyclization to
afford 1,2-benzothiazines 3, hoping that the sulfoximine
nitrogen was sufficiently nucleophilic to intercept any
electrophilic species produced by activation of the alkyne.13
Table 1. Synthesis of 1,2-Benzothiazines and
1,2-Benzoisothiazoles
(4) Harmata, M.; Kahraman, M.; Jones, D. E.; Pavri, N.; Weatherwax,
S. E. Tetrahedron 1998, 54, 9995 and references cited therein.
(5) Bolm, C.; Hildebrand, J. P. Tetrahedron Lett. 1998, 39, 5731.
(6) (a) Harmata, M.; Hong, X.; Barnes, C. L. Org. Lett. 2004, 6, 2201.
(b) Harmata, M.; Hong, X. J. Am. Chem. Soc. 2003, 125, 5754-5756. (c)
Harmata, M.; Ghosh, S. K.; Barnes, C. L. J. Supramol. Chem. 2003, 2,
349. (d) Harmata, M.; Hong, X.; Barnes, C. L. Tetrahedron Lett. 2003, 44,
7261. (e) Harmata, M.; Ghosh, S. K. Org. Lett. 2001, 3, 3321. (f) Harmata,
M.; Pavri, N. Angew. Chem., Int. Ed. 1999, 38, 2419.
(7) (a) Bosshammer, S.; Gais, H.-J. Synthesis 1998, 6, 919. (b) Hwang,
K. J.; Logusch, E. W.; Brannigan, L. H.; Thompson, M. R. J. Org. Chem.
1987, 52, 3435. (c) Schaffner-Sabba, K.; Tomaselli, H.; Henrici, B.; Renfroe,
H. B. J. Org. Chem. 1977, 42, 952.
entry
Ra
products
% (9)b
% (10)b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
propyl
butyl
pentyl
hexyl
9a/10a
9b/10b
9c/10c
9d/10d
9e/10e
9f/10f
9g/10g
9h/10h
9i/10i
9j/10j
9k/10k
9l/10l
9m/10m
9n/10n
70
73
60
58
54
53
56
50
0c
52
56
0
21
16
20
27
19
16
18
13
19
18
0c
-(CH2)3OBn
-(CH2)3Ph
-(CH2)3CCH
cyclohexyl
tert-butyl
(8) A limited number of cyclic sulfoximines related to 3 are known.
See: (a) Williams, T. R.; Cram, D. J. J. Org. Chem. 1973, 38, 20. (b)
Stoss, P.; Satzinger, G. Chem. Ber. 1972, 105, 2575. (c) Williams, T. R.;
Cram, D. J. J. Am. Chem. Soc. 1971, 93, 7333.
1-cyclohexenyl
cyclopropyl
phenyl
4-methylphenyl
4-tert-butylphenyl
d
19
81
73
69
(9) Lombardino, J. G.; Kuhla, D. E. AdV. Heterocycl. Chem. 1981, 28,
73.
(10) (a) Bihovsky, R.; Tao, M.; Mallamo, J. P.; Wells, G. J. Bioorg.
Med. Chem. Lett. 2004, 14, 1035. (b) Del Tacca, M.; Colucci, R.; Fornai,
M.; Blandizzi, C. Clin. Drug InVest. 2002, 22, 799. (c) Pandey, V. K.;
Pathak, Seema R. Ind. J. Chem, Sect. B 2002, 41, 1749. (d) Davies, Neal
M.; Skjodt, Neil M. Clin. Pharmacokinet. 1999, 36, 115. (e) Pairet, M.;
Van Ryn, J.; Schierok, H.; Mauz, A.; Trummlitz, G.; Engelhardt, G.
Inflammation Res. 1998, 47, 270.
a Between 2 and 10 equiv of alkyne was used. Further optimization to
reduce the amount of alkyne must be performed. b Yields are for isolated
products. c Only coupling product was formed. See text. d Product could
not be isolated in pure form.
(11) (a) Hackenberger, C. P. R.; Raabe, G.; Bolm, C. Chem.sEur. J.
2004, 10, 2942. (b) Bolm, C.; Hackenberger, C. P. R.; Simic, O.; Verrucci,
M.; Muller, D.; Bienewald, F. Synthesis 2002, 7, 879. (c) Johnson, C. R.;
Lavergne, O. M. J. Org. Chem. 1993, 58, 1922. (d) Raguse, B.; Ridley, D.
D. Aust. J. Chem. 1986, 39, 1655. (e) Schmidbaur, H.; Kammel, G. Chem.
Ber. 1971, 104, 3234. (f) Johnson, C. R.; Rigau, J. J.; Haake, M.; McCants,
D., Jr.; Keiser, J. E.; Gertsema, A. Tetrahedron Lett. 1968, 9, 3719.
(12) (a) Lane, C.; Snieckus, V. Synlett 2000, 1294. But see also: (b)
Kundu, N. G.; Khan, M. W. Tetrahedron 2000, 56, 4777. (c) Asao, N.;
Nogami, T.; Takahashi, K.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124,
764.
73% yield along with 13-27% yields of the corresponding
benzoisothiazoles 10 (Table 1, entries 1-8). Steric effects
(13) At the suggestion of a referee, we conducted a reaction with 8 and
an internal alkyne. The reaction of 8 with 4-octyne under our reported
reaction conditions afforded recovered starting material (50%) as well as a
small amount of an unidentified product that did not incorporate 4-octyne
and was not a benzothiazine or isobenzothiazole.
144
Org. Lett., Vol. 7, No. 1, 2005