reaction is accompanied by the formation of further
addition product (2) of PhSeH to vinylic selenide, double
bond isomerization product (3), and 1-phenylseleno-1-
alkene (4) as byproducts (eq 1, and entry 1 in Table 1).
Palladium(II) Acetate in Pyridine as an
Effective Catalyst for Highly Regioselective
Hydroselenation of Alkynes
Ikuyo Kamiya,† Etsuyo Nishinaka,† and Akiya Ogawa*,‡
Department of Chemistry, Faculty of Science, Nara Women’s
University, Kitauoyanishi-machi, Nara 630-8506, Japan,
and Department of Applied Chemistry, Faculty of
Engineering, Osaka Prefecture University, 1-1 Gakuen-cho,
Sakai, Osaka 599-8531, Japan
Received July 24, 2004
The product selectivity is somewhat increased by using
benzene as the solvent; however, byproducts 2-4 are still
formed similarly (entry 2, in Table 1). Thus, much effort
has been invested to improve the selectivity and efficiency
for this hydroselenation and we have successfully found
that palladium acetate in pyridine attains an excellent
product selectivity in the hydroselenation of alkynes with
benzeneselenol: 2-phenylseleno-1-alkene (1) was ob-
tained as a sole product (entry 5 in Table 1). On the other
hand, the reaction in the absence of catalyst did not
proceed efficiently (entry 6 in Table 1).
A highly regioselective hydroselenation of terminal alkynes
with benzeneselenol can be achieved by the combination of
palladium acetate and pyridine, providing the corresponding
terminal alkenes, (i.e., 2-phenylseleno-1-alkenes) as a sole
product. In this hydroselenation, pyridine may act as a
suitable ligand for active palladium intermediates.
TABLE 1. Influence of Solvents on Hydroselenationa
yield, %b
Recently, organosulfur compounds have been employed
as substrates for transition-metal-catalyzed reactions and
several synthetically useful reactions of them have been
developed in the presence of transion matal catalysts.1
In contrast, the transition-metal-catalyzed reactions of
organoselenium compounds have been scarcely investi-
gated, probably because the higher affinity of selenium
to transition metal catalysts may extensively decrease
the catalytic activity in the reactions of selenium com-
pounds.2 In 1992, we reported the first example of
transition-metal-catalyzed addition reactions of ben-
zeneselenol to terminal alkynes, in which palladium
complexes such as Pd(OAc)2, PdCl2, PdCl2(PPh3)2, PdCl2-
(PhCN)2, and Pd(PPh3)4 are used as the catalyst.2m
However, the product selectivity of hydroselenation is not
adequate in comparison with the corresponding pal-
ladium-catalyzed hydrothiolation of terminal alkynes
with benzenethiol, which provides the terminal alkenes
(i.e., 2-phenylthio-1-alkenes), as a sole product (cat. Pd-
(OAc)2, THF, 67 °C).3
entry
solvent
temp, °C
1
2
3
4
1
2
3
4
5
6c
THF
67
80
100
80
100
100
46
62
23
47
77
3
15
13
29
0
10
7
34
0
0
0
5
benzene
toluene
pyridine
pyridine
pyridine
<3
0
0
0
0
0
0
a Reaction conditions: Pd(OAc)2 (2 mol %), 1-octyne (1.0 mmol),
solvent (0.5 mL), PhSeH (1.0 mmol), 15 h. b Determined by 1H
NMR. c In the absence of catalyst.
Table 2 represents the results of the Pd(OAc)2-
catalyzed hydroselenation of various terminal alkynes.
(2) (a) Okamura, H.; Miura, M.; Kosugi, K.; Takei, H. Tetrahedron
Lett. 1980, 21, 87. (b) Murahashi, S.; Yano, T. J. Am. Chem. Soc. 1980,
102, 2456. (c) Uemura, S.; Fukuzawa, S.; Patil, S. R. J. Organomet.
Chem. 1983, 243, 9. (d) Cristau, H. J.; Chabaud, B.; Labaudiniere, R.;
Chistol, H. J. Org. Chem. 1986, 51, 875. (e) Ohe, K.; Takahashi, H.;
Uemura, S.; Sugita, N. J. Organomet. Chem. 1987, 326, 35. (f)
Takahashi, H.; Ohe, K.; Uemura, S.; Sugita, N. J. Organomet. Chem.
1987, 334, C43. (g) Ohe, K.; Takahashi, H.; Uemura, S.; Sugita, N. J.
Org. Chem. 1987, 52, 4859. (h) Tsumuraya, T.; Ando, W. Organome-
tallics 1989, 8, 2286. (i) Fukuzawa, S.; Fujinami, T.; Sasai, S. Chem.
Lett. 1990, 927. (j) Kuniyasu, H.; Ogawa, A.; Miyazaki, S.; Ryu, I.;
Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 9796. (k) Uemura,
S.; Takahashi, H.; Ohe, K. J. Organomet. Chem 1992, 423, C9. (l)
Kuniyasu, H.; Ogawa, A.; Higaki, K.; Sonoda, N. Organometallics 1992,
11, 3937. (m) Kuniyasu, H.; Ogawa, A.; Sato, K.; Ryu, I.; Sonoda, N.
Tetrahedron Lett. 1992, 33, 5525. (n) Ogawa, A.; Sonoda, N. J. Synth.
Org. Chem. Jpn. 1993, 51, 815. (o) Han, L.-B.; Choi, N.; Tanaka, M. J.
Am. Chem. Soc. 1996, 118, 7000. (p) Ogawa, A.; Kuniyasu, H.; Sonoda,
N.; Hirao, T. J. Org. Chem. 1997, 62, 8361. (q) Kuniyasu, H.;
Maruyama, A.; Kurosawa, H. Organometallics 1998, 17, 908. (r)
Ogawa, A.; Kuniyasu, H.; Takeba, M.; Ikeda, T.; Sonoda, N.; Hirao, T.
J. Organomet. Chem. 1998, 564, 1. (s) Ogawa, A.; Kudo, A.; Hirao, T.
Tetrahedron Lett. 1998, 39, 5213. (t) Nishiyama, Y.; Tokunaga, K.;
Sonoda, N. Org. Lett. 1999, 1, 1725.
In THF, this Pd(OAc)2-catalyzed hydroselenation of
terminal alkynes with benzeneselenol provides 2-phen-
ylseleno-1-alkene (1) as the major product, but the
* Address correspondence to this author. Phone/fax: 81-72-254-9290.
† Nara Women’s University.
‡ Osaka Prefecture University.
(1) Reviews: (a) Ogawa, A. In Main Group Metals in Organic
Synthesis; Yamamoto, H., Oshima, K., Eds.; Wiley-VCH: Weinheim,
Germany, 2004; Chapter 15. (b) Alonso, F.; Beletskaya, I.; Yus, M.
Chem. Rev. 2004, 104, 3079. (c) Ogawa, A. In Handbook of Organo-
palladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley:
New York, 2002; Chapter VII.6. (d) Kuniyasu, H. In Catalytic Hetero-
functionalization; Togni, A., Gru¨tzmacher, H., Eds.; Wiley-VCH: Wein-
heim, Germany, 2001; Chapter 7. (e) Kondo, T.; Mitsudo, T. Chem.
Rev. 2000, 100, 3205. (f) Ogawa, A. J. Organomet. Chem. 2000, 611,
463. (g) Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 99, 3435. (h) Han,
L.-B.; Tanaka, M. Chem. Commun. 1999, 395.
(3) Kuniyasu, H.; Ogawa, A.; Sato, K.; Ryu, I.; Kambe, N.; Sonoda,
N. J. Am. Chem. Soc. 1992, 114, 5902.
10.1021/jo048727j CCC: $30.25 © 2005 American Chemical Society
Published on Web 12/17/2004
696
J. Org. Chem. 2005, 70, 696-698