4 of 5
LUNDBERG ET AL.
Although unexpected, this difference does not necessarily
indicate different operating mechanisms between the dry
and the non‐dry Zr‐catalyzed protocols and may result
from differences in equilibria of ammonium carboxylate
salts and/or other off‐cycle species.
REFERENCES
[1] New address: F. Tinnis, Ardena, Box 2073, S‐151 02 Södertälje,
Sweden
[2] a) D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey,
J. J. L. Leazer, R. J. Linderman, K. Lorenz, J. Manley, B. A.
Pearlman, A. Wells, A. Zaks, T. Y. Zhang, Green Chem. 2007,
9, 411; b) M. C. Bryan, P. J. Dunn, D. Entwistle, F. Gallou, S.
G. Koenig, J. D. Hayler, M. R. Hickey, S. Hughes, M. E.
Kopach, G. Moine, P. Richardson, F. Roschangar, A. Steven,
F. J. Weiberth, Green Chem. 2018, 20, 5082.
As demonstrated in Figure 1B the reaction is sensi-
tive towards steric hindrance in both the amine and
the carboxylic acid. Even in the presence of 8 equiva-
lents of amine, amide 3m was isolated in only 46% yield
as compared to 92% of amide 3a after the same reaction
time. Similarly, amide 3d was isolated in 91% yield
whereas amide 3n was isolated in merely 15% yield.
The observed drop in yield for the substrates with a
methyl group in the neighbouring position of either
the carboxylic acid or amine compared to their H‐
analogues is analogous to the previously reported
hafnium‐ and zirconium‐catalyzed protocols under dry
conditions.[5a, d]
[3] a) M. T. Sabatini, L. T. Boulton, H. F. Sneddon, T. D. Sheppard,
Nature Catal. 2019, 2, 10; b) X. Wang, Nature Catal. 2019, 2, 98;
c) R. M. de Figueiredo, J.‐S. Suppo, J.‐M. Campagne, Chem.
Rev. 2016, 116, 12029; d) A. Ojeda‐Porras, D. Gamba‐Sánchez,
J. Org. Chem. 2016, 81, 11548; e) H. Lundberg, F. Tinnis, N.
Selander, H. Adolfsson, Chem. Soc. Rev. 2014, 43, 2714; f) B.
M. Monks, A. Whiting, Sustainable Catalysis, John Wiley &
Sons, Inc., Hoboken, New Jersey, USA 2013, 89; g) C. L. Allen,
J. M. Williams, J. Chem. Soc. Rev. 2011, 40, 3405; h) T. Krause,
S. Baader, B. Erb, L. J. Gooßen, Nat. Commun. 2016, 7, 11732; i)
L. Hu, S. Xu, Z. Zhao, Y. Yang, Z. Peng, M. Yang, C. Wang, J.
Zhao, J. Am. Chem. Soc. 2016, 138, 13135; j) X. Xu, H. Feng, L.
Huang, X. Liu, J. Org. Chem. 2018, 83, 7962; k) L. Hu, J. F.
Zhao, Synlett 2017, 28, 1663; l) S. M. Akondi, P. Gangireddy,
T. C. Pickel, L. S. Liebeskind, Org. Lett. 2018, 20, 538; m) V.
Srivastava, P. K. Singh, P. P. Singh, Tetrahedron Lett. 2019,
60, 40.
4 | CONCLUSIONS
To conclude, a practical and scalable homogeneous
protocol for direct amidation using a commercially
available zirconium catalyst has been developed that
circumvents the use of water scavenging techniques.
The system shares several characteristics with previously
developed Group (IV) metal‐catalyzed protocols for direct
amidation, such as higher yields using higher amine con-
centrations and a preference for amidation of carboxylic
acids over esters. The tolerance towards alcohols and
stoichiometric quantities of water are however distinct
differences of this system compared to previous protocols.
Group (IV) metal chloride complexes are known to be
hydrolytically unstable and form the corresponding
oxides in the presence of water. The observation that
fluorosulfonate analogues of water‐sensitive chloride
complexes can be used as catalysts under non‐dry condi-
tions is intriguing and makes these Lewis acidic metal
compounds a highly interesting class of robust catalysts
for further exploration.
[4] For selected examples of boron‐based amidation catalysts and
mediators see: a) Y. Du, T. Barber, S. E. Lim, H. S. Rzepa, I.
R. Baxendale, A. Whiting, Chem. Commun 2019, 55, 2916; b)
D. N. Sawant, D. B. Bagal, S. Ogawa, K. Selvam, S. Saito, Org.
Lett. 2018, 20, 4397; c) M. T. Sabatini, L. T. Boulton, T. D.
Sheppard, Sci. Adv. 2017, 3, e1701028; d) H. Noda, M.
Furutachi, Y. Asada, M. Shibasaki, N. Kumagai, Nat. Chem.
2017, 9, 571; e) T. Mohy El Dine, W. Erb, Y. Berhault, J.
Rouden, J. Blanchet, J. Org. Chem. 2015, 80, 4532; f) R. M.
Lanigan, P. Starkov, T. D. Sheppard, J. Org. Chem. 2013, 78,
4512; g) N. Gernigon, R. M. Al‐Zoubi, D. G. Hall, J. Org. Chem.
2012, 77, 8386; h) K. Arnold, B. Davies, D. Herault, A. Whiting,
Angew. Chem. Int. Ed. 2008, 47, 2673; i) K. Arnold, B. Davies, R.
L. Giles, C. Grosjean, G. E. Smith, A. Whiting, Adv. Synth.
Catal. 2006, 348, 813; j) K. Ishihara, S. Ohara, H. Yamamoto,
J. Org. Chem. 1996, 61, 4196.
[5] a) H. Lundberg, H. Adolfsson, ACS Catal. 2015, 5, 3271; b) F.
Tinnis, H. Lundberg, H. Adolfsson, Adv. Synth. Catal. 2012,
354, 2531; c) H. Lundberg, F. Tinnis, H. Adolfsson, Synlett
2012, 2201; d) H. Lundberg, F. Tinnis, H. Adolfsson, Chem. A
Eur. J. 2012, 18, 3822; e) C. L. Allen, A. R. Chhatwal, J. M. J.
Williams, Chem. Commun. 2012, 48, 666; f) L. Y. Shteinberg,
S. A. Kondratov, S. M. Shein, Zh. Org. Khim. 1988, 24, 1968;
g) L. Y. Shteinberg, S. A. Kondratov, S. M. Shein, Zh. Org.
Khim. 1989, 25, 1945.
ACKNOWLEDGMENTS
The authors gratefully acknowledge Stockholm
University, the K. & A. Wallenberg Foundations and the
Swedish Research Council for financial support.
[6] a) S. Kobayashi, C. Ogawa, Chem. A Eur. J. 2006, 12, 5954; b)
T.‐P. Loh, G.‐L. Chua, Chem. Commun. 2006, 2739; c) M. U.
Kahveci, M. A. Tasdelen, W. D. Cook, Y. Yagci, Macromol.
Chem. Phys. 2008, 209, 1881; d) N. A. Rebacz, P. E. Savage,
Ind. Eng. Chem. Res. 2010, 49, 535; e) N. A. Rebacz, P. E. Sav-
age, Phys. Chem. Chem. Phys. 2013, 15, 3562; f) K. Tekin, M.
ORCID