6660
References
1. (a) Postema, M. H. D. C-Glycoside Synthesis; CRC Press: Boca Raton, 1995. (b) Levy, D. E.; Tang, C. The
Chemistry of C-Glycosides. Elsevier Science: Oxford, 1995.
2. (a) Dwek, A. R. Chem. Rev. 1996, 96, 683. (b) Essentials of Glycobiology, Varki, A.; Cummings, R.; Esko, J.;
Freeze, H.; Hart, G.; Marth, J.; Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York,
1999.
3. For selected recent papers with leading references, see: (a) Dondoni, A.; Zuurmond, H. M.; Boscarato, A. J. Org.
Chem. 1997, 62, 8114. (b) Rubinstenn, G.; Esnault, J.; Mallet, J.-M.; Sinay, P. Tetrahedron: Asymmetry 1997, 8,
1327. (c) Andersen, L.; Munch Mikkelsen, L.; Beau, J.-M.; Skrydstrup, T. Synlett 1998, 1393. (d) Ravishankar,
R.; Surolia, A.; Vijayan, M.; Lim, S.; Kishi, Y. J. Am. Chem. Soc. 1998, 120, 11297. (e) Bazin, H. G.; Du, Y.;
Polat, T.; Linhardt, R. J. J. Org. Chem. 1999, 64, 7254. (f) Jarreton, O.; Skrydstrup, T.; Espinosa, J.-F.; Jimenez-
Barbero, J.; Beau, J.-M. Chem. Eur. J. 1999, 5, 430. (g) Postema, M. H. D.; Calimente, D. Tetrahedron Lett. 1999,
40, 4755. (h) Grin, F. K.; Paterson, D. E.; Taylor, R. J. K. Angew. Chem., Int. Ed. 1999, 38, 2939. (i) Roy, R.;
Dominique, R.; Das, S. K. J. Org. Chem. 1999, 64, 5408. (j) Zhu, Y.-H.; Demange, R.; Vogel, P. Tetrahedron:
Asymmetry 2000, 11, 263.
4. (a) Haneda, T.; Goekjian, P. G.; Kim, S. H.; Kishi, Y. J. Org. Chem. 1992, 57, 490. (b) Wei, A.; Haudrechy, A.;
Audin, C.; Jun, H.-S.; Haudrechy-Bretel, N.; Kishi, Y. J. Org. Chem. 1995, 60, 2160. (c) Sutherlin, D. P.;
Armstrong, R. W. J. Org. Chem. 1997, 62, 5267.
5. Spak, S. J.; Martin, O. R. Tetrahedron 2000, 56, 217.
6. Dondoni, A.; Kleban, M.; Zuurmond, H.; Marra, A. Tetrahedron Lett. 1998, 39, 7991.
7. Xin, Y.-C.; Zhang, Y.-M.; Mallet, J.-M.; Glaudemans, C. P. J.; Sinay, P. Eur. J. Org. Chem. 1999, 471.
20
8. Compound 1. M.p. 93±94ꢀC (CH2Cl2±Et2O); ꢀ +50.5 (c 0.7; CHCl3); 1H NMR (300 MHz, CDCl3): ꢁ 7.81±7.23
D
(m, 30H, 6Ph), 5.14 and 4.89 (2d, 2H, J=11.2 Hz, PhCH2), 5.09 (ddd, 1H, J5,6a=3.0, J6a,6b=J6a,P=16.0 Hz, H-
6a), 4.96 (ddd, 1H, J3,4=2.6, J4,5=J4,P=1.0 Hz, H-4), 4.92 and 4.82 (2d, 2H, J=11.5 Hz, PhCH2), 4.85 and 4.67
(2d, 2H, J=12.3 Hz, PhCH2), 4.45 (dddd, 1H, J5,6b=10.7, J5,P=10.0 Hz, H-5), 4.39 (d, 1H, J1,2=3.6 Hz, H-1),
4.07 (dd, 1H, J2,3=10.3 Hz, H-3), 3.98 (dd, 1H, H-2), 3.50 (ddd, 1H, J6b,P=10.3 Hz, H-6b), 2.48 (s, 3H, OMe). 31
P
1
NMR (121 MHz, CDCl3): ꢁ 24.9. Compound 2. H NMR (300 MHz, CDCl3): ꢁ 9.59 (d, 1H, J1,2=1.2 Hz, H-1),
7.66±7.60 and 7.50±7.25 (2m, 25H, 5Ph), 5.00 and 4.67 (2d, 2H, J=11.2 Hz, PhCH2), 4.90 and 4.69 (2d, 2H,
J=10.6 Hz, PhCH2), 4.81 (s, 2H, PhCH2), 4.07 (dd, 1H, J4,5=2.6, J5,6=0.7 Hz, H-5), 4.06 (dd, 1H, J2,3=10.0,
J3,4=9.0 Hz, H-3), 3.88 (dd, 1H, J6,7a=8.2, J7a,7b=10.3 Hz, H-7a), 3.83 (dd, 1H, J6,7b=5.7 Hz, H-7b), 3.71 (dd,
1H, H-2), 3.68 (dd, 1H, H-4), 3.48 (ddd, 1H, H-6), 1.08 (s, 9H, t-Bu).
9. The replacement of thiazole with benzothiazole in the synthesis of formyl C-glycosides gives rise to considerable
economical advantages and produces, in many cases, crystalline compounds which can be more easily puri®ed and
handled. However, the liberation of the formyl group from benzothiazole requires the assistance of silver ion in the
hydrolysis of the benzothiazoline.
10. Further proof of the assigned structure came from NOE experiments performed on the peracetylated (1!6)-C-
disaccharide obtained from 3 through desilylation, hydrogenation and acetylation.
11. The Wittig reactions were carried out under the same conditions employed in the ®rst cycle but using 1.2 equiv. of
the formyl C-galactoside 2.
20
12. Compound 9. ꢀ +32.8 (c 0.6; CHCl3); 1H NMR (500 MHz, CDCl3): ꢁ 5.40 (dd, 1H, J3,4=3.5, J4,5=1.1 Hz, H-
D
4E), 5.34 (dd, 1H, J3,4=3.5, J4,5=0.7 Hz, H-4A), 5.31 (dd, 1H, J2,3=10.8 Hz, H-3A), 5.28 (dd, 3H, J3,4=3.5,
J4,5=0.7 Hz, H-4B, H-4C, H-4D), 5.13 (dd, 1H, J1,2=3.7, J2,3=10.6 Hz, H-2A), 5.06, 5.04, and 5.03 (3dd, 4H,
J1,2=9.3, J2,3=10.3 Hz, H-2B, H-2C, H-2D, H-2E), 4.99 (dd, 1H, H-3E), 4.96, 4.95 and 4.94 (3dd, 3H, H-3B, H-
3C, H-3D), 4.96 (d, 1H, H-1A), 4.11 (dd, 1 H, J5,6a=6.8, J6a,6b=11.4 Hz, H-6aE), 4.06 (dd, 1H, J5,6b=6.5 Hz, H-
6bE), 3.91 (ddd, 1H, J5,6a=6.0, J5,6b=8.0 Hz, H-5A), 3.84 (ddd, 1H, J5,6a=J5,6b=6.5 Hz, H-5E), 3.52±3.48 (m,
3H, H-5B, H-5C, H-5D), 3.38 (s, 3H, OMe), 3.38 (ddd, 1H, J=2.0, 8.2, 9.3 Hz, H-1E), 3.32 and 3.30 (2ddd, 3H,
J=2.0, 8.2, 9.3 Hz, H-1B, H-1C, H-1D), 2.18±1.96 (9s, 48H, 16Ac), 1.72±1.58 and 1.48±1.40 (2m, 16H,
4CH2CH2). MALDI-TOF MS: 1530.4 (M+Na), 1546.5 (M+K).
13. Glaudemans, C. P. J. Chem. Rev. 1991, 91, 25.