1982
C. B. Carlson, P. A Beal / Bioorg. Med. Chem. Lett. 10 (2000) 1979±1982
2. Huang, P. Y.; Carbonell, R. G. Biotech. Bioeng. 1999, 63,
633.
2H), 6.82 (d, 2H), 5.96 (m, 1H), 5.33 (dd, 1H), 5.30 (m, 1H iso-
propyl methine), 5.23 (dd, 1H), 5.11 (bs, 1H), 4.63 (d, 2H),
4.39 (d, 2H), 1.44 (d, 6H); FABHRMS calcd mass for
C28H28N3O4: 470.206, found 470.208.
3. Carlson, C. B.; Beal, P. A. Org. Lett. 2000, 2, 1465.
4. Li, K.; Fernandez-Saiz, M.; Rigl, C. T.; Kumar, A.; Ragu-
nathan, K. G.; McConnaughie, A. W.; Boykin, D. W.;
Schneider, H.-J.; Wilson, W. D. Bioorg. Med. Chem. 1997, 5,
1157.
5. Michael, K.; Tor, Y. Chem. Eur. J. 1998, 4, 2091.
6. Pearson, N. D.; Prescott, C. D. Chem. Biol. 1997, 4, 409.
7. Nielsen, P. E. Bioconj. Chem. 1991, 2, 1.
8. Bogdan, F. M.; Chow, C. S. Chem. Rev. 1997, 97, 1489.
9. Liaw, Y.-C.; Gao, Y.-G.; Robinson, H.; van der Marel, G.
A.; van Boom, J. H.; Wang, A. H.-J. Biochemistry 1989, 28,
9913.
10. Wakelin, L. P. G.; Chetcuti, P.; Denny, W. A. J. Med.
Chem. 1990, 33, 2039.
11. Todd, A. K.; Adams, A.; Thorpe, J. H.; Denny, W. A.;
Wakelin, L. P. G. J. Med. Chem. 1999, 42, 536.
12. Adams, A.; Guss, J. M.; Collyer, C. A.; Denny, W. A.;
Wakelin, L. P. G. Biochemistry 1999, 38, 9221.
13. Denny, W. A.; Cain, B. F.; Atwell, G. J.; Hansch, C.;
Panthananickal, A.; Leo, A. J. Med. Chem. 1982, 25, 276.
14. Bourdouxhe-Housiaux, C.; Colson, P.; Houssier, C.;
Waring, M. J.; Bailly, C. Biochemistry 1996, 35, 4251.
15. Bourdouxhe-Housiaux, C.; Colson, P.; Houssier, C.;
Bailly, C. Anti-Cancer Drug Des. 1996, 11, 509.
18. Preparation of 9-(40-methylamino-allyloxycarbamate)-
anilinoacridine-4-carboxylic acid (1). To a solution of ester 3
(0.250 g, 0.533 mmol) in THF (5 mL), was added lithium
hydroxide monohydrate (0.046 g, 1.1 mmol, 2 equiv) in water
(0.6 M). The resulting solution was stirred at rt for 12 h. The
reaction solution was neutralized with 2N HCl, and the solvent
was removed under reduced pressure. The brick red residual oil
was puri®ed by ¯ash chromatography (EtOAc:hexanes 9:1 w/
late addition of methanol) on a column of silica gel to give
0.163 g (72%) of acid 1 as a reddish-orange solid. 1H NMR
(500 MHz, CDCl3) d 8.40 (bs, 1H), 8.25 (bs, 1H), 7.94 (bs,
1H), 7.77 (t, 1H), 7.69 (bs, 2H), 7.22 (m, 3H), 6.93 (bs, 2H),
5.92 (m, 1H), 5.29 (dd, 1H), 5.18 (dd, 1H), 4.51 (d, 2H), 4.20
(d, 2H); FABHRMS calcd mass for C25H22N3O4: 428.161,
found 428.161.
19. Abbreviations used in the synthetic schemes are: AcOH,
acetic acid; DCC, 1,3-dicyclohexylcarbodiimide; NEM, N-
ethylmorpholine; NHS, N-hydroxysuccinimide; TEA, triethy-
lamine; TFA, tri¯uoroacetic acid; THF, tetrahydrofuran; TIS,
triisopropylsilane.
20. Kates, S. A.; Daniels, S. B.; Sole, N. A.; Barany, G. In
Peptides, Chemistry, Structure & Biology, Proc. 13th American
Peptide Symposium; Hodges, R. S., Smith, J. A., Eds.;
ESCOM: Leiden, 1994; Vol. 13, pp 113±115.
16. Preparation of allyl 4-aminobenzylamino carbamate (2).
To a mixture of allyl 1-benzotriazolyl carbamate (0.580 g,
2.65 mmol, 1.2 equiv) in THF (2.5 mL), was added dropwise 4-
aminobenzylamine (0.250 mL, 2.21 mmol) and TEA (0.260 mL,
1.2 equiv). The resulting yellow solution was stirred at rt for
6 h. When the reaction was complete by thin layer chromato-
graphy (TLC) (acetone:TEA 98:2), the solvent was evaporated
under reduced pressure. The residual liquid was puri®ed by
¯ash chromatography on a column of silica gel, eluting with
EtOAc:hexanes (3:2) to give 0.390 g (92%) of protected amine
21. ES-MS/MS data for 5: m/z 657.3 (N-Ser-Val-Acr-Lys-C);
570.4 (N-Val-Acr-Lys-C); 512.2 (N-Ser-Val-Acr-C); 425.2 (N-
Val-Acr-C); 326.1 (N-Acr-C).
22. Long, E. C.; Barton, J. K. Acc. Chem. Res. 1990, 23, 273.
23. Denny, W. A.; Wakelin, L. P. G. Cancer Res. 1986, 46, 1717.
24. Searcey, M.; Martin, P. N.; Howarth, N. M.; Madden, B.;
Wakelin, L. P. G. Bioorg. Med. Chem. Lett. 1996, 6, 1831.
25. The RNA-binding experiment was conducting in the same
fashion as for DNA. Titration of compound 5 (30 mM in
0.01 M PIPES buer pH 7, 0.01 M NaCl, 1 mM EDTA) with
polyIꢀ polyC RNA (10 mM bp increments). A bathochromic
shift of 10 nm was observed and saturation was reached at
approximately the same concentration as with DNA (60 mM).
26. As are many acridine derivatives, compound 5 is ¯uor-
escent, with excitation and emission maxima at 400 and
450 nm, respectively. The emission maximum was blue-shifted
and the intensity decreased in the presence of excess calf thy-
mus DNA, again consistent with intercalation.
27. Westhof, E.; Sundaralingam, M. Proc. Natl. Acad. Sci.
U.S.A. 1980, 77, 1852.
28. Sakore, T. D.; Reddy, B. S.; Sobell, H. M. J. Mol. Biol.
1979, 114, 763.
29. Figgitt, D. P.; Denny, W. A.; Gamage, S. A.; Ralph, R. K.
Anti-Cancer Drug Des. 1994, 9, 199.
30. Froelich-Ammon, S. J.; Oshero, N. J. Biol. Chem. 1995,
270, 21429.
1
1 as a viscous liquid. H NMR (500 MHz, CDCl3) d 7.01 (d,
2H, J=8.4 Hz), 6.56 (d, 2H, J=8.4 Hz), 5.89 (m, 1H), 5.51 (bs,
1H amide), 5.26 (dd, 1H, J=17.1, 1.5 Hz), 5.18 (dd, 1H,
J=10.2, 1.5 Hz), 4.54 (d, 2H, J=6 Hz), 4.18 (d, 2H, J=5.7 Hz),
3.75 (s, 2H aniline); FABHRMS calcd mass for C11H15N2O2:
207.124, found 207.123.
17. Preparation of iso-propyl-9-(40-methylaminoallyl-oxycar-
bamate)anilinoacridine-4-carboxylate (4). To a solution of
ester 3 (0.75 mmol) in anhydrous acetonitrile (8 mL), was
added amine 1 (3 mmol, 4 equiv) and TEA (1 mL, 7.5 mmol,
10 equiv). The resulting mixture was heated under re¯ux for
24 h. When the reaction was complete by TLC (EtOAc:hex-
anes:MeOH 90:9:1), the solution was allowed to cool to rt, and
solvent was evaporated under reduced pressure. The residue
was puri®ed by ¯ash chromatography on a column of alumina
oxide, eluting with hexanes:EtOAc (4:1) to give 0.262 g (75%)
1
of ester 4 as an orange solid. H NMR (500 MHz, CDCl3) d
11.32 (bs, 1H), 8.24 (bs, 1H), 7.35 (d, 1H), 7.25 (d, 2H), 7.18 (d,