F. Baragona et al. / Tetrahedron 67 (2011) 8731e8739
8739
Chen, R. Org. Lett. 2009, 11, 137e140; (k) Dinda, S. K.; Das, S. K.; Panda, G.
Synthesis 2009, 1886e1896; (l) Meng, J.; Jiang, T.; Bhatti, A. H.; Siddiqui, B. S.;
Dixon, S.; Kilburn, J. D. Org. Biomol. Chem. 2010, 8, 107e113; (m) Uyanik, M.;
Okamoto, H.; Yasui, T.; Ishihara, K. Science 2010, 328, 1376e1379; (n) For a re-
view, see: Bertolini, F.; Pineschi, M. Org. Prep. Proced. Int. 2009, 41, 385e418.
7. (a) Barluenga, J.; Fananas, F. J.; Sanz, R.; Marcos, C. Chem.dEur. J. 2005, 11,
5397e5407; (b) Szlosek-Pinaud, M.; Diaz, P.; Martinez, J.; Lamaty, F. Tetrahedron
2007, 63, 3340e3349; (c) Fan, R.; Li, W.; Ye, Y.; Wang, L.; Wang, L. Adv. Synth.
Catal. 2008, 350, 1531e1536; (d) Nguyen, R.-V.; Li, C.-J. Synlett 2008, 1897e1901.
8. Lomberget, T.; Baragona, F.; Fenet, B.; Barret, R. Org. Lett. 2006, 8, 3919e3922.
9. [3þ2] Cycloaddition type reaction to form 2,3-dihydrobenzofurans usually re-
quires the use of Lewis acid promoter or metal catalyst: (a) Echavarren, A. M. J.
Org. Chem. 1990, 55, 4255e4260; (b) Engler, T. A.; Gfesser, G. A.; Draney, B. W. J.
Org. Chem. 1995, 60, 3700e3706; (c) Engler, T. A.; Chai, W.; LaTessa, K. O. J. Org.
Chem. 1996, 61, 9297e9308; (d) Kokubo, K.; Harada, K.; Mochizuki, E.; Oshima,
T. Tetrahedron Lett. 2010, 51, 955e958; (e) Itoh, T.; Kawai, K.; Hayase, S.; Ohara,
H. Tetrahedron Lett. 2003, 44, 4081e4084; (f) See Ref. 7c;
0.24 mmol), toluene (4 mL) and reaction time at rt¼30 min. Aza-
diene 9 (22.4 mg, 0.2 mmol) in 1 mL of toluene and reaction time at
0
tography (silica gel, cyclohexane/ethyl acetate 70:30) to give com-
pound 17 as a pale green oil (10 mg, contaminated with an
ꢀC¼30 min. The crude product was purified by flash chroma-
~
ꢀ
inseparable side-product). 1H NMR (300 MHz, CDCl3, ppm):
d
¼1.62
(3H, s, CH3), 2.80 (6H, s, NMe2), 2.90 (1H, d, J¼16.0, H3), 3.72 (1H, d,
J¼16.0, H30), 3.81 (3H, s, OCH3), 6.33 (1H, br s, HC]NeNMe2), 6.68
(1H, very br s, NHSO2Ph), 7.17 (1H, d, J¼2.6, H6 or H4), 7.22 (1H, d,
J¼2.5, H4 or H6), 7.44 (2H, m, SO2(m-ArH)), 7.55 (1H, m, SO2(p-
ArH)), 7.68e7.72 (2H, m, SO2(o-ArH)). HRMS (ESIþ): m/z calcd for
C20H23N3NaO5S: 440.1251 [MHþ]; found: 440.1249.
10. Enders, D.; Wortmann, L.; Peters, R. Acc. Chem. Res. 2000, 33, 157e169.
11. Lomberget, T.; Barret, R. Tetrahedron Lett. 2008, 49, 715e718.
4.5.12. Compound 18. According to general procedure 3, scale: N-
(4-hydroxy-2,6-dimethyl-phenyl)-benzene sulfonamide, Ag2CO3
on Celite (300 mg, 0. 53 mmol), toluene (20 mL) and reaction time
at 110 ꢀC¼30 min. Azadiene 9 (112 mg, 1.0 mmol) in 2 mL of toluene
and reaction time at 0 ꢀC¼30 min. The crude product was purified
by flash chromatography (silica gel, cyclohexane/ethyl acetate
70:30) to give compound 18 as an orange solid (95 mg, 50%); mp
12. (a) Nair, V.; Dhanya, R.; Rajesh, C.; Devipriya, S. Synlett 2005, 2407e2419; (b)
~
Carreno, M. C.; Ribagorda, M. Sci. Synth. 2006, 28, 629e734.
13. Adams, R.; Looker, J. H. J. Am. Chem. Soc. 1951, 73, 1145e1149.
14. (a) Zhong, Y.-L.; Shing, T. K. M. J. Org. Chem. 1997, 62, 2622e2624; (b) England,
D. B.; Kerr, M. A. J. Org. Chem. 2005, 70, 6519e6522.
15. For references on hypervalent iodine compounds: (a) Stang, P. J.; Zhdankin, V.
Chem. Rev. 1996, 96, 1123e1178; (b) Varvoglis, A. Hypervalent Iodine in Organic
Synthesis; Academic: London, 1997; (c) Hypervalent Iodine Chemistry; Wirth, T.,
Ed.Topics in Current Chemistry; Springer: Berlin, Heidelberg, 2003; Vol. 224;
(d) Moriarty, R. M. J. Org. Chem. 2005, 70, 2893e2903; (e) Ladziata, U.;
Zhdankin, V. ARKIVOC 2006, ix, 26e58; (f) Zhdankin, V. V.; Stang, P. J. Chem. Rev.
2008, 108, 5299e5358.
173e174 ꢀC. 1H NMR (300 MHz, CDCl3, ppm):
d
¼1.58 (3H, s, CH3),
1.81 (3H, s, CH3), 2.00 (3H, s, CH3), 2.80 (6H, s, NMe2), 2.84 (1H, d,
J¼15.6, H3), 3.50 (1H, d, J¼15.6, H30), 5.92 (1H, br s, HC]NeNMe2),
6.37 (1H, s, H7), 6.67 (1H, very br s, NHSO2Ph), 7.46 (2H, m, SO2(m-
16. Barret, R.; Daudon, M. Synth. Commun. 1990, 20, 1543e1549.
17. Barret, R.; Daudon, M. Tetrahedron Lett. 1991, 32, 2133e2134.
18. The oxidation reaction carried out on unsubstituted para-aminophenol led to
a complex reaction mixture.
ArH)), 7.57 (1H, m, SO2(p-ArH)), 7.73e7.76 (2H, m, SO2(o-ArH)). 13
C
NMR (100 MHz, CDCl3, ppm):
d
¼16.0 (CH3), 19.0 (CH3), 26.0 (CH3),
39.5 (CH2), 42.9 (CH3), 89.1 (C), 109.0 (CH), 124.7 (C), 125.3 (C), 127.4
(CH), 129.1 (CH), 132.8 (CH), 135.4 (C), 138.0 (C), 140.9 (C), 157.4 (C).
HRMS (ESIþ): m/z calcd for C20H25N3NaO3S: 410.1509 [MNaþ];
found: 410.1503.
ꢀ
19. Balogh, V.; Fetizon, M.; Golfier, M. J. Org. Chem. 1971, 36, 1339e1341.
20. Preliminary studies using NaIO4 supported on silica (see Ref. 14b) led to less
satisfactory results for the subsequent [3þ2] cycloaddition with azadienes.
21. (a) Blair, I. A.; Boobis, A. R.; Davies, D. S.; Cresp, T. M. Tetrahedron Lett. 1980, 21,
4947e4950; (b) An increased stability has been noticed in quinone imides
derived from ortho,ortho0-dimethyl substituted para-acetaminophens: Fer-
nando, C. R.; Calder, I. C.; Ham, K. N. J. Med. Chem. 1980, 23, 1153e1158.
22. Numerous attempts to obtain 2,3-dihydrobenzofuran 7 derived from para-
cetamol by using our sequential one-pot procedure with Ag2CO3 on Celite or
PIFA (in toluene or ethanol) were unsuccessful.
Acknowledgements
The authors would like to thank Dr. Denis Bouchu for his interest
23. Ethanol was sometimes used in this reaction to circumvent solubility problems
of the starting material. Moreover, though the quinone imides formation seems
to be preferentially favoured in a non-polar solvent, such as toluene, the use
of ethanol appears to be beneficial for the [3þ2] cycloaddition second step
(Table 2).
in this work and for fruitful discussions. F.B. thanks the ‘Ministero
ꢁ
dell’Universita e della Ricerca’ MIUR for a Ph.D. fellowship. E.L.P.
thanks the European Community for an LLP ERASMUS fellowship.
ꢁ
24. For a review on synthetic uses of SES amides, see: Ribiere, P.; Declerck, V.;
References and notes
Martinez, J.; Lamaty, F. Chem. Rev. 2006, 106, 2249e2269.
25. Poon, K. W. C.; Dudley, G. B. J. Org. Chem. 2006, 71, 3923e3927.
26. Bharate, S. B. Synlett 2006, 496e497.
27. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512e7515.
28. Waldner, A. Helv. Chim. Acta 1988, 71, 486e492.
1. Chu, G.-H.; Gu, M.; Cassel, J. A.; Belanger, S.; Graczyk, T. M.; DeHaven, R. N.;
Conway-James, N.; Koblish, M.; Little, P. J.; DeHaven-Hudkins, D. L.; Dolle, R. E.
Bioorg. Med. Chem. Lett. 2005, 15, 5114e5119.
29. Pertuit, D.; Moulari, B.; Betz, T.; Nadaradjane, A.; Neumann, D.; Ismaïli, L.;
Refouvelet, B.; Pellequer, Y.; Lamprecht, A. J. Controlled Release 2007, 123,
211e218.
30. Parker, L. L.; Gowans, N. D.; Jones, S. W.; Robins, D. J. Tetrahedron 2003, 59,
10165e10171.
2. Ohkawa, S.; Fukatsu, K.; Miki, S.; Hashimoto, T.; Sakamoto, J.; Doi, T.; Nagai, Y.;
Aono, T. J. Med. Chem. 1997, 40, 559e573.
3. (a) Chapleo, C. B.; Doxey, J. C.; Stillings, M. R. PCT Int. Appl. WO 92/05171, 1992;
(b) For the neuroprotective effects of (þ)-efaroxan, see: Rizk, P.; Salazar, J.;
Raisman-Vozari, R.; Marien, M.; Ruberg, M.; Colpaert, F.; Debeir, T. Neuro-
psychopharmacology 2006, 31, 1146e1157.
31. Weinreb, S. M.; Demko, D. M.; Lessen, T. A. Tetrahedron Lett. 1986, 27,
2099e2102.
4. (a) See Ref. 3a; (b) Taylor, J. P.; Jackson, D. A.; Morgan, N. G.; Chan, S. L. F. Bi-
32. Trepka, R. D.; Harrington, J. K.; McConville, J. W.; McGurran, K. T.; Mendel, A.;
Pauly, D. R.; Robertson, J. E.; Waddington, J. T. J. Agric. Food Chem. 1974, 22,
1111e1119.
ochem. Biophys. Res. Commun. 2006, 349, 809e815.
5. (a) Rebitzer, S.; Annibali, D.; Kopp, S.; Eder, M.; Langer, T.; Chiba, P.; Ecker, G. F.;
Noe, C. R. Farmaco 2003, 58, 185e191; (b) Ecker, G.; Chiba, P.; Hitzler, M.;
€
33. Chankeshwara, S. V.; Chakraborti, A. K. Org. Lett. 2006, 8, 3259e3262.
34. Belyaev, A.; Zhang, X.; Augustyns, K.; Lambeir, A.-M.; De Meester, I.; Vederni-
Schmid, D.; Visser, K.; Cordes, H. P.; Csollei, J.; Seydel, J. K.; Schaper, K.-J. J. Med.
Chem. 1996, 39, 4767e4774.
ꢀ
kova, I.; Scharpe, S.; Haemers, A. J. Med. Chem. 1999, 42, 1041e1052.
6. (a) Plotkin, M.; Chen, S.; Spoors, P. G. Tetrahedron Lett. 2000, 41, 2269e2273; (b)
Thalji, R. K.; Ahrendt, K. A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2001,
123, 9692e9693; (c) Saito, H.; Oishi, H.; Kitagaki, S.; Anada, M.; Hashimoto, S.
Org. Lett. 2002, 4, 3887e3890; (d) Grant, V. H.; Liu, B. Tetrahedron Lett. 2005, 46,
1237e1239; (e) Trend, R. M.; Ramtohul, Y. K.; Stoltz, B. J. Am. Chem. Soc. 2005,
127, 17778e17788; (f) Lin, H.; Schall, A.; Reiser, O. Synlett 2005, 2603e2606; (g)
Fousteris, M.; Chevrin, C.; Le Bras, J.; Muzart, J. Green Chem. 2006, 8, 522e523;
(h) Shen, Z.; Dong, V. M. Angew. Chem., Int. Ed. 2009, 48, 784e786; (i) Jiang, H.;
Hamada, Y. Org. Biomol. Chem. 2009, 7, 4173e4176; (j) Meng, X.; Huang, Y.;
35. Haga, N.; Endo, Y.; Kataoka, K.-i.; Yamaguchi, K.; Shudo, K. J. Am. Chem. Soc.
1992, 114, 9795e9806.
36. Won, J.-E.; Kim, H.-K.; Kim, J.-J.; Yim, H.-S.; Kim, M.-J.; Kang, S.-B.; Chung, H.-A.;
Lee, S.-G.; Yoon, Y.-J. Tetrahedron 2007, 63, 12720e12730.
37. Richter, H. J.; Dressler, R. L. J. Org. Chem. 1962, 27, 4066e4068.
38. Avdeenko, A. P. Russ. J. Org. Chem. 2000, 36, 522e527.
39. Chung, N. M.; Tieckelmann, H. J. Org. Chem. 1970, 35, 2517e2520.
40. Bakke, J. M.; Sletvold, I. Org. Biomol. Chem. 2003, 1, 2710e2715.