7114
The mechanism proposed for the formation of products 8 and 9 is outlined in Scheme 4.11 It
®rst involves the addition of vinyllithium 7 to cyclobutenone 6, leading to a mixture of cis- and
trans-divinyl substituted cyclobutenes 11 and 12.11 Cyclobutene 11 undergoes anionic oxy-Cope
rearrangement to give 13. However, cyclobutene 12 experiences a conrotatory electrocyclic ring
opening to aord 14, which yields the enolates 13 and 15 by 8p and 6p electrocyclization,
respectively.10,11 Hydrolysis of 13 and 15 produces the compounds 8 and 9. As noted before, the
substitution pattern of the reactants determines the reaction pathway leading to formation of 8
and/or 9.
In summary, we have developed a new method for the synthesis of cyclooctadienones. Further
investigation of the mechanism, scope and limitations of this process is currently under investigation,
as well as delineation of the factors which in¯uence cyclooctadienone versus cyclohexenone and
cyclooctadienone versus 5,5-fused ring formation.
Acknowledgements
We thank the Scienti®c and Technical Research Council of Turkey (TBAG-1433), State
Planning Organization of Turkey (DPT-98K122490), and Research Board of Middle East
Technical University (AFP-98-01-03-06) for support of this research.
References
1. For representative examples of eight-membered ring syntheses and leading references, see: (a) Molander, G. A.;
Machrouhi, F. J. Org. Chem. 1999, 64, 4119±4123. (b) Takahashi, T.; Sun, W.-H.; Liu, Y.; Nakajima, K.; Kotora,
M. Organometallics 1998, 17, 3841±3843. (c) Wender, P. A.; Nuss, J. M.; Smith, D. B.; Suarez-Sobrino, A.;
Vagberg, J.; Decosta, D.; Bordner, J. J. Org. Chem. 1997, 62, 4908±4809. (d) Wender, P. A.; Ihle, N. C. J. Am.
Chem. Soc. 1986, 108, 4678±4679.
2. Hesse, M. Ring Enlargement in Organic Chemistry; VCH: Weinheim, 1991.
3. Moore, H. W.; Benjamin, R. Y. Chemtracts: Org. Chem. 1992, 5, 273±313.
4. Paquette, L. A.; Morwick, T. In Organic Syntheses; Shinkai, I., Ed.; Organic Syntheses, Inc.: 1996; Vol. 74,
pp. 169±177.
5. For synthesis of these type of compounds, see: (a) Paquette, L. A.; Morwick, T. J. Am. Chem. Soc. 1995, 117,
1451±1452. (b) Negri, J. T.; Morwick, T.; Doyon, J.; Wilson, P. D.; Hickey, E. R.; Paquette, L. A. J. Am. Chem.
Soc. 1993, 115, 12189±12190.
6. Formation of 5,5-fused ring carbocycles from eight-membered ring compounds by a transannular cyclization is
well-precedented. For example, see: Paquette, L. A.; Morwick, T. M.; Negri, J. T. Tetrahedron 1996, 52, 3075±
3094.
7. (a) Liebeskind, L. S.; Fengl, R. W.; Wirtz, K. R.; Shawe, T. T. J. Org. Chem. 1988, 53, 2482±2488. (b) Reed,
M. W.; Pollart, D. J.; Perri, S. T.; Foland, L. D.; Moore, H. W. J. Org. Chem. 1988, 53, 2477±2482.
8. (a) Liebeskind, L. S.; Bombrun, A. J. Org. Chem. 1994, 59, 1149±1159. (b) Xu, S. L.; Taing, M.; Moore, H. W.
J. Org. Chem. 1991, 56, 6104±6109.
9. For a related study producing eight-membered ring systems, see: Paquette, L. A.; Tae, J. Tetrahedron Lett. 1997,
38, 3151±3154.
10. Formation of six-membered ring carbocycles in these type reactions is well known. For example, see: Morwick,
T. M.; Paquette, L. A. J. Org. Chem. 1997, 62, 627±635.
11. For mechanistically-related studies, see: (a) Paquette, L. A.; Morwick, T. M. J. Am. Chem. Soc. 1997, 119, 1230±
1241. (b) Paquette, L. A.; Hamme, A. T.; Kuo, L. H.; Doyon, J.; Kreutzholz, R. J. Am. Chem. Soc. 1997, 119,
1242±1253. (c) See also Refs. 4±6 and 9.