ChemComm
Communication
with literature values for the rate of thermal ring-closure (k) from (AI-0045) for support. X L gratefully acknowledges the sup-
MC to SP where: k(SP-3) E 50 ꢀ k(SP-1) E 2–6 ꢀ k(SP-2).2,11b,14 port from the Research Enhancement Program of Texas State
If we use experimental studies in solution as a guide, we speculate University.
that the identity of the XTX isomer is TTC.6b
The assignment of CCX to an intermediate with a lifetime of
milliseconds is controversial. Based on transient absorption
Notes and references
1 (a) V. I. Minkin, Russ. Chem. Rev., 2013, 82, 1; (b) V. I. Minkin, Chem.
studies, CCX species have lifetimes well below milliseconds on
the photochemical reaction pathway which would make detec-
tion difficult under our experimental conditions. However, we
note that our observations reflect a system which after initial
irradiation, is equilibrating thermally up to the moment of
transfer into the gas phase. Our conclusion that we have
observed CCX relies on the qualitative comparison of CCS
values to experimental drift times because direct quantitative
correlation between CCS values and drift times in travelling
wave ion mobility is not yet fully understood. Recent experi-
mental studies have argued that biomolecule structure is pre-
served during the ESI process and the structures largely reflect
that in solution.15 This suggests that dynamic behaviour is
temporarily ‘‘frozen’’ when the molecules are transferred from
solution (thermodynamically controlled) to gas phase (kinetically
controlled). We argue that the solution structure of the SP–MC
system is preserved during our experiments and our results
provide a unique perspective on this classic photochromic
system. Photoisomerization of SP in the gas phase has been
studied; ionization potentials were combined with theory but
their conclusions did not contradict theoretical results.16 This
Rev., 2004, 104, 2751; (c) N. Tamai and H. Miyasaka, Chem. Rev.,
2000, 100, 1875.
¨
2 H. Gorner, Phys. Chem. Chem. Phys., 2001, 3, 416.
3 (a) A. Gahlmann, I.-R. Lee and A. H. Zewail, Angew. Chem., Int. Ed.,
2010, 49, 6524; (b) C. J. Wohl and D. Kuciauskas, J. Phys. Chem. B,
2005, 109, 22186.
4 V. Malatesta, C. Neri, M. L. Wis, L. Montanari and R. Millini, J. Am.
Chem. Soc., 1997, 119, 3451.
5 J. Aubard, F. Maurel, G. Buntinx, R. Guglielmetti and G. Levi, Mol.
Cryst. Liq. Cryst., 2000, 345, 215.
6 (a) Y. Futami, M. Lim, L. S. Chin, S. Kudoh, M. Takayanagi and
M. Nakata, Chem. Phys. Lett., 2003, 370, 460; (b) Y. Sheng, J. Leszczynski,
A. A. Garcia, R. Rosario, D. Gust and J. Springer, J. Phys. Chem. B, 2004,
108, 16233.
7 J. L. Bahr, G. Kodis, L. de la Garza, S. Lin, A. L. Moore, T. A. Moore
and D. Gust, J. Am. Chem. Soc., 2001, 123, 7124.
8 (a) L. H. Yee, T. Hanley, R. A. Evans, T. P. Davis and G. E. Ball,
J. Org. Chem., 2010, 75, 2851; (b) S. Delbaere and G. Vermeersch,
J. Photochem. Photobiol., C, 2008, 9, 61; (c) S. Dalbaere, J. C. Micheau,
J. Berthet and G. Vermeersch, Int. J. Photoenergy, 2004, 6, 151;
(d) J. Hobley and V. Malatesta, Phys. Chem. Chem. Phys., 2000,
2, 57; (e) J. Berthet, S. Delbaere, L. M. Carvalho, G. Vermeersch
and P. J. Coelho, Tetrahedron Lett., 2006, 47, 4903; ( f ) J. Hobley,
V. Malatesta, R. Millini, L. Montanari and W. O. Parker, Phys. Chem.
Chem. Phys., 1999, 1, 3259.
9 (a) J. Hobley, V. Malatesta, W. Giroldini and W. Stringo, Phys. Chem.
Chem. Phys., 2000, 2, 53; (b) G. Cottone, R. Noto and G. LaManna,
Chem. Phys. Lett., 2004, 388, 218.
gas phase study also built on the work of Sheng and co-workers, 10 (a) J. Ujma, M. De Cecco, O. Chepelin, H. Levene, C. Moffat,
S. J. Pike, P. J. Lusby and P. E. Barran, Chem. Commun., 2012,
48, 4423; (b) J. Thiel, D. Yang, M. H. Rosnes, X. Liu, C. Yvon,
S. E. Kelly, Y. F. Song, D. L. Long and L. Cronin, Angew. Chem.,
which used a reduced atom set for SP.
Based on our results, we conclude that the likely reaction
pathway is: SP ! CCT/CCC ! TTC/CTC. Theoretical values for
the relative energies of the TTC and TTT isomers revealed a
minor difference for calculations in vacuo versus DCM solution.17
Int. Ed., 2011, 50, 8871; (c) C. A. Scarff, J. R. Snelling, M. M. Knust,
C. L. Wilkins and J. H. Scrivens, J. Am. Chem. Soc., 2012, 134, 9193;
(d) Y. T. Chan, X. Li, M. Soler, J. L. Wang, C. Wesdemiotis and
G. R. Newkome, J. Am. Chem. Soc., 2009, 131, 16395.
Based on explicit solvent modeling, Eilmes18 reported that a few 11 (a) S.-R. Keum, K.-B. Lee, P. M. KIazmaier, R. Manderville and
E. Buncel, Magn. Reson. Chem., 1992, 30, 1128; (b) S.-R. Keum,
M.-S. Hur, P. M. Kazmaier and E. Buncel, Can. J. Chem., 1991,
69, 1940.
water molecules are sufficient to stabilize MC. Ganesan and
Remacle19 studied the effect of protonation, charge and external
electric fields on the SP–MC process. They reported that external 12 J. T. Wojtyk, A. Wasey, N.-N. Xiao, P. M. Kazmaier, S. Hoz, C. Y. Yu,
R. P. Lemieux and E. Buncel, J. Phys. Chem. A, 2007, 111, 2411.
13 (a) M. F. Mesleh, J. M. Hunter, A. A. Shvartsburg, G. C. Schatz and
fields favour SP ring-opening, but protonation affects reactivity
more than external electric fields. We feel our results are
M. F. Jarrold, J. Phys. Chem., 1996, 100, 16082; (b) M. F. Mesleh, J. M.
reflective of SP–MC dynamics and the contribution of field
effects does not alter our conclusions significantly.
Hunter, A. A. Shvartsburg, G. C. Schatz and M. F. Jarrold, J. Phys. Chem. A,
1997, 101, 968; (c) H. Kim, H. I. Kim, P. V. Johnson, L. W. Beegle,
J. L. Beauchamp, W. A. Goddard and I. Kanik, Anal. Chem., 2008, 80, 1928.
14 (a) S. Swansburg, E. Buncel and R. P. Lemieux, J. Am. Chem. Soc.,
2000, 122, 6594; (b) L. E. Elizalde and G. de los Santos, Dyes Pigm.,
2008, 78, 111.
15 (a) S. L. Bernstein, N. F. Dupuis, N. D. Lazo, T. Wyttenbach, M. M.
Condron, G. Bitan, D. B. Teplow, J. E. Shea, B. T. Ruotolo, C. V.
Robinson and M. T. Bowers, Nat. Chem., 2009, 1, 326; (b) K. Breukera
and F. W. McClafferty, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 18145;
(c) N. A. Pierson, L. Chen, D. H. Russell and D. E. Clemmer, J. Am.
Chem. Soc., 2013, 135, 3186.
Mechanistic elucidation of the elementary steps in SP–MC
isomerization has been largely limited to transient spectroscopy
and model systems. The combination of ESI with IM-MS pro-
vides additional information on the structure-dynamics of this
important photochromic system.
WJB thanks the National Science Foundation (PREM Center
for Interfaces, DMR-1205670) and the ACS Petroleum Research
Fund (51997UR7) for financial support of this research. The 16 L. Poisson, K. D. Raffael, B. Soep, J. Mestdagh and G. Buntinx, J. Am.
Chem. Soc., 2006, 128, 3169.
17 G. Cottone, R. Noto and G. La Manna, Molecules, 2008, 13, 1246.
18 A. Eilmes, J. Phys. Chem. A, 2013, 117, 2629.
authors also acknowledge support of the National Science
Foundation for X-ray and NMR instrumentation (CRIF:
MU-0946998 and MRI-0821254) and the Welch Foundation 19 R. Ganesan and F. Remacle, Theor. Chem. Acc., 2012, 131, 1255.
3426 | Chem. Commun., 2014, 50, 3424--3426
This journal is ©The Royal Society of Chemistry 2014