metric Diels-Alder reactions with nitrosodienophiles22 have
also been used. These cycloadditions have been extensively
studied by Streith et al. in both racemic23 and optically active
series. Concerning these asymmetric cycloadditions, the best
results have been obtained with chiral nitroso dienophiles,9,24
whereas chiral dienes have been scarcely used since moder-
ated asymmetric inductions are usually observed.25 Thus,
starting from a chiral N-dienyl lactam, Streith has synthesized
a 3,4-dihydroxypyrrolidine.25a
Scheme 1
Glycosidase inhibitors have a large number of interesting
potential applications including treatment of AIDS and
diabetes as well as tumor metastasis inhibitors.6 The interest
of the polyhydroxypyrrolidines derives from the fact that they
have been found to be potent inhibitors for many glycosi-
dases.7 Therefore, 5-methyl polyhydroxypyrrolidines with
structures similar to that depicted in Scheme 1 have been
recently proved to be efficient inhibitors of R-L-fucosidase.8,9
The search for new methods for synthesizing these com-
pounds with modified structure and configuration is of
potential relevance.
The synthesis of polyhydroxylated pyrrolidines has been
performed from naturally occurring chiral compounds (L-
arabinopyranoside,10 D-xilose,11 D-gulono lactone,12 D-glu-
cose,13 D-galactofuranose,14 and L-lixopyranoside15) as well
as enantiomer resolution16 and asymmetric synthesis. Out-
standing examples of the latter methodology mainly involve
the use of enantiomerically pure chiral precursors controlling
the formation of a new stereogenic center (from L-proline,17
(R) and (S)-glutamic acid,18 (+) and (-)-serine,19 and (R)-
or (S)-phenylglycinol20), but enzymatic catalysis21 and asym-
With these precedents, our group has investigated the
reaction of [(S)R]-(1E,3E)-1-p-tolylsulfinyl-1,3-pentadiene
126 with benzyl nitrosoformate 2. The highly reactive
dienophile 2 was prepared in situ, in the presence of chiral
diene 1, by oxidation of the N-benzyloxycarbonyl hydrox-
amic acid with tetrabutylammonium periodate in CH2Cl2
solution.27 Fortunately the reaction took place under very
1
mild conditions (CH2Cl2, -78 to 0 °C). After 2 h, the H
NMR spectrum of the crude reaction revealed the existence
of a 2:1 mixture of the 2H-1,2-oxazine 3 and the unreacted
diene 1. The addition of new portions of Bu4NIO4 and
hydroxamic acid until complete disappearance of diene
allowed to obtain compound 3 in 54% yield.28
No other diastereoisomers could be detected from the
crude reaction by NMR, thus suggesting that both regio-
selectivity and stereoselectivity of the reaction are very high
(Scheme 2).
(21) (a) Ziegler, T.; Straub, A,; Effenberger, F. Angew. Chem. 1988, 100,
737. (b) Liu, K. K.-C.; Kagimoto, T.; Pederson, L. R.; Zhong, Z.; Ichikawa,
Y.; Porco, J. A.; Wong, Ch.-H. J. Am. Chem. Soc. 1991, 113, 6678. (c)
Liu, K. K.-C.; Kagimoto, T.; Chen, L.; Zhong, Z.; Ichikawa, Y.; Wong,
Ch.-H. J. Org. Chem. 1991, 56, 6280. (d) Wang, Y. F.; Dumas, D. P.;
Wong, Ch.-H. Tetrahedron Lett. 1993, 34, 403.
(7) (a) Iminosugars as Glycosidase Inhibitors-Nojirimycin and Beyond;
Stu¨zt, A. E., Ed., Wiley-VCH: Weinheim, 1999. (b) Bols, M. Acc. Chem.
Res. 1998, 31, 1.
(8) (a) Liu, K. K.-C.; Kagimoto, T.; Pederson, L. R.; Zhong, Z.; Ichikawa,
Y.; Porco, J. A.; Wong, Ch.-H. J. Am. Chem. Soc. 1991, 113, 6187. (b)
Wong, Ch-H.; Dumas, D. P.; Ichikawa, Y.; Koseki, K.; Danishefsky, S. J.;
Weston, B. W.; Lowe, J. B. J. Am. Chem. Soc. 1992, 114, 7321. (c) Quiao,
L.; Murray, B. W.; Shimazaki, M.; Schultz, J.; Wong, Ch-H. J. Am. Chem
Soc. 1996, 118, 7653.
(9) (a) Defoin, A.; Sifferlen, T.; Streith, J.; Dosbaaˆ, I.; Foglietti, M. J.
Tetrahedron: Asymmetry 1997, 8, 363. (b) Sifferlen, T.; Defoin, A.; Streith,
J.; Le Noue¨n, D.; Tarnus, C.; Dosbaaˆ, I.; Foglietti, M. J. Tetrahedron 2000,
56, 971.
(10) Reist, E. J.; Gueffroy, D. E.; Blackford, R. W.; Goodman, L. J.
Am. Chem Soc. 1966, 31, 4025.
(11) Fleet, G. W. J.; Smith, P. W. Tetrahedron 1986, 42, 5685.
(12) (a) Fleet, G. W. J.; Son, J. Ch. Tetrahedron 1988, 44, 2637. (b)
Horenstein, B. A.; Zabinski, R. F.; Schramm, V. L. Tetrahedron Lett. 1993,
34, 7213. (c) Furneaux, R. H.; Limberg, G.; Tyler, P. C. Tetrahedron 1997,
53, 2915.
(13) (a) Han, S.-Y.; Lidlell, P. A.; Joullie, M. M. Synth. Commun. 1988,
18, 275. (b) Fleet, G. W. J.; Witty, D. R. Tetrahedron: Asymmetry 1990,
1 119. (c) Kayakiri, H.; Nakamura, K.; Takae, S.; Setoy, H.; Uchida, I.;
Terano, H.; Hashimoto, M.; Tada, T.; Koda, S. Chem. Pharm. Bull. 1991,
39, 2807.
(14) Buchanan, J. G.; Lumbard, K. W.; Sturgeon, R. J.; Thomson, D.
K.; Wightman, R. H. J. Chem. Soc., Perkin Trans. 1 1990, 699.
(15) Takano, S.; Moriya, M.; Ogasawara, K. Tetrahedron: Asymmetry
1992, 3, 681.
(16) Witte, J. F.; McClard, R. W. Tetrahedron Lett. 1991, 32, 3927.
(17) (a) Guillerm, G.; Varkados, M.; Auvin, S.; Le Goffic, F. Tetrahedron
Lett. 1987, 28, 535. (b) Goli, D. M.; Cheesman, B. V.; Hassan, M. E.;
Lodaya, R.; Slama, J. T. Carbohydr. Res. 1994, 219. (c) Blanco, M. J.;
Sardina, F. J. J. Org. Chem. 1998, 63, 3411.
(22) For reviews, see: (a) Streith, J.; Defoin, A. Synthesis 1994, 1107.
(b) Streith, J.; Defoin, A. Synlett 1996, 189.
(23) (a) Behr, J.-B.; Defoin, A.; Streith, J. Heterocycles 1994, 37, 747.
(b) Behr, J.-B.; Defoin, A.; Mahmood, N.; Streith, J. HelV. Chim. Acta 1995,
78, 1166.
(24) Defoin, A.; Sifferlen, T.; Streith, J. Synlett 1997, 1294.
(25) (a) Defoin, A.; Pires, J.; Streith, J. Synlett 1991, 417. (b) Behr, J.-
B.; Defoin, A.; Pires, J.; Streith, J.; Macko, L.; Zehnder, M. Tetrahedron
1996, 52, 3283. (c) Hussain, A.; Wyatt, P. B. Tetrahedron 1993, 49, 2123.
(26) Solladie´, G.; Ruiz, P.; Colobert, F.; Carren˜o, M. C.; Garc´ıa-Ruano,
J. L. Synthesis 1991, 1011.
(27) (a) Kirby, G. W.; Sweeny, J. G. J. Chem. Soc., Chem. Commun.
1973, 704. (b) Keck, G. E.; Fleming, St. A. Tetrahedron Lett. 1978, 4763.
(28) To a solution of diene 1 (2.7 g, 13.00 mmol) and Bu4NIO4 (2.9 g,
6.00 mmol) in CH2Cl2 (20 mL, with ca. 50 beads of 4 Å molecular sieves)
at -78 °C was added within 1 h, portionwise, hydroxamic acid (3.3 g,
19.00 mmol) in CH2Cl2 (10 mL). The mixture was warmed to 0 °C and
stirred for 2 h. Then the mixture was cooled at -78 °C, and new portions
of Bu4NIO4 (6.00 mmol) and hydroxamic acid (19.00 mmol) were added.
After stirring for 2 h at 0 °C, the mixture was poured into CH2Cl2 (20 mL),
washed with Na2SO3 (10%, 2 × 10 mL) and saturated NaHCO3 (2 × 10
mL), and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers
were dried over Na2SO4 and evaporated. The residue was purified by flash
chromatography (Et2O:hexane, 3:1), to give [3S,6R,(S)R]-N-benzyloxycar-
bonyl-3,6-dihydro-3-methyl-6-(p-tolylsulfinyl)-2H-1,2-oxazine 3 as a white
solid 2.6 g, 7.01 mmol, 54%); mp ) 195 °C; [R]20 ) +26.1° (c 0.97,
D
1
CHCl3); H NMR (CDCl3) δ 0.89 (d, 3H, J ) 6.9, CH3-C3), 2.40 (s, 3H,
CH3-C6H4), 4.41 (cddd, 1H, J ) 1.3, 2.7, 4.4, 6.9, H-C3), 5.17, 5.23 (system
AB, 2H, J ) 12.2, PhCH2-), 5.61 (ddd, 1H, J ) 1.6, 1.3, 2.7, H-C6), 5.85
(ddd, 1H, J ) 1.3, 1.3, 10.4, H-C5), 5.94 (ddd, 1H, J ) 1.6, 4.4, 10.4,
H-C4), 7.26-7.34 (m, 7H, C6H5- and -C6H4-), 7.60 (system AA′BB′, 2H,
-C6H4-); 13C NMR (CDCl3) δ 17.9 (CH3-C3), 21.3 (CH3-C6H4), 51.1 (C3),
68.0 (PhCH2-), 89.6 (C6), 117.1 (C4), 125.9, 128.1, 128.4, 128.6, 129.3
(HC-arom), 133.7 (C5), 134.8, 135.5, 142.4 (C-arom), 155.1 (CdO).
(29) This interaction, which is similar to the allylic strain, must also be
responsible for the preferred axial orientation of the phenyl group (bulkier
than the methyl one) in N-alkoxycarbonyl derivatives of 3-phenyl 1,4-
thiazanes (Garc´ıa Ruano, J. L.; Martinez, M. C.; Rodriguez, J. H.;
Olefirowicz, E. M.; Eliel, E. L. J. Org. Chem. 1992, 57, 4215).
(18) Ikota, N.; Hanaki, A. Chem. Pharm. Bull. 1990, 38, 2712.
(19) Huang, Y.; Dalton J. J. Org. Chem. 1997, 62, 372.
(20) (a) Meyers, A.; Andres, C. J.; Resek, J. E.; McLaughlin, M. A.;
Wooddall, C.-C.; Lee, H. J. Org. Chem. 1996, 61, 2586. (b) Dudot, B.;
Micouin, L.; Baussamne, I.; Royer, J. Synthesis 1999, 688.
3166
Org. Lett., Vol. 2, No. 20, 2000