Combinatorial Libraries Based on PriVileged Structures
J. Am. Chem. Soc., Vol. 122, No. 41, 2000 9941
development of solid-phase chemistry for its construction
through a unique cycloloading strategy.23 The versatility and
reliability of this cycloloading strategy is subsequently refined
through the solid-phase synthesis of six small combinatorial
libraries and various other natural and designed benzopyran-
type molecules of recent medicinal interest. The following paper
describes the application of this chemistry to the construction
of a 10 000-membered natural product-like library paying
particular attention to diversity assessment, quality control, use
of a new encoding technology, and biological applications.24
The final paper of this series describes a practical parallel
solution phase approach for the diversity enhancement of these
benzopyran libraries through the introduction of additional
functionality on the pyran ring of the template.25
may be capable of interacting with a variety of cellular targets.
In addition, the fact that many of the structures are active in
cell-based assays suggested that derivatives of the benzopyran
unit remain sufficiently lipophilic to cross cell membranes, a
key feature of any biologically relevant small molecule library.26
These generalizations were corroborated by the fact that a variety
of designed pharmaceutical ligands containing the motif have
recently been disclosed, including compounds 40-44 (Figure
2); furthermore, a topographical analysis of structures of known
therapeutics identified the benzopyran moiety as a preferential
framework for drug design.28 A final, more subtle, advantage
to the use of the 2,2-dimethylbenzopyran template is that the
olefin of the pyran ring constitutes a latent site of diversity. In
other words, while this olefin will not be modified in the primary
library, one could envision a range of subsequent modifications
that could be used to either increase library diversity or enhance
the properties of a particular lead structure. Such pyran olefins
are readily modified by hydrogenation, epoxidation, dihydroxy-
lation, and aminohydroxylation giving rise to a large number
of biologically active structures,27 prominent examples of which
include the ATP-dependent potassium channel activator cro-
makalim70 (45, Figure 3), the anti-HIV agent suksdorfin71 (46,
Figure 3), and the antineoplastic natural product â-lapachone72
(47). The molecular diversity implementations of these modi-
Results and Discussion
Selection of the Benzopyran as a Privileged Structure.
From the outset, we were aware that ultimate success of these
efforts was contingent on the proper choice of a privileged
natural product motif to be used as a library template. In
deliberating, we required a structure that was found as a subunit
in a large number of natural products with diverse biological
activities, and this template needed to accommodate the instal-
lation of a maximum degree of diversity via solid-phase split-
and-pool synthesis. Furthermore, the scaffold should contain
one or more rigid ring systems such that substituents would be
presented to potential binding targets in a well-defined fashion.
Finally, we required that the template be sufficiently lipophilic
to ensure good cell membrane penetration, and that the majority
of final library members be of less than 500 molecular weight.26
A search of chemical abstracts revealed the 2,2-dimethyl-
2H-benzopyran moiety to be present in more than 4000
compounds including natural products and designed structures.27
The relatively high incidence of this benzopyran unit (and its
derivatives, vide infra) in natural products is partially attributable
to the numerous prenylation and cyclization reactions in many
polyketide biosynthesis pathways. Representative members of
these natural products are illustrated in Figure 2 along with their
reported biological activities. Examining the characteristics of
compounds 1-44 (Figure 2) reveals their diverse structural
properties, and more importantly, their wide ranging biological
actions, suggesting that derivatives of this benzopyran motif
(28) Bemis, G. W.; Murcko, M. A. J. Med. Chem. 1996, 39, 2887-
2893.
(29) Li, L.; Wang, H.-K.; Chang, J.-J.; McPhail, A. T.; McPhail, D. R.;
Terada, H.; Konoshima, T.; Kokumai, M.; Kozuka, M.; Lee, K.-H.; J. Nat.
Prod. 1993, 56, 690-698.
(30) Kawaii, S.; Tomono, Y.; Katase, E.; Ogawa, K.; Yano, M.;
Takemura, Y.; Ju-ichi, M.; Ito, C.; Furukawa, H. J. Nat. Prod. 1999, 62,
587-589.
(31) Yang, Z.-Y.; Xia, Y.; Xia, P.; Tachibana, Y.; Bastow, K. F.; Lee,
K.-H. Bioorg. Med. Chem. Lett. 1999, 9, 713-716.
(32) Cao, S.-G.; Wu, X.-H.; Sim, K.-Y.; Tan, B. H. K.; Vittal, J. J.;
Pereira, J. T.; Goh, S.-H. HelV. Chim. Acta 1998, 81, 1404-1416.
(33) Banskota, A. H.; Tezuka, Y.; Prasain, J. K.; Matsushige, K.; Saiki,
I.; Kadota, S. J. Nat. Prod. 1998, 61, 896-900.
(34) Pillai, S. P.; Menon, S. R.; Mitscher, L. A.; Pillai, C. A.; Shankel,
D. M. J. Nat. Prod. 1999, 62, 1358-1362.
(35) (a) For a review, see: Ishikawa, T. Heterocycles 2000, 53, 453-
474. (b) Kashman, Y.; Gustafson, K. R.; Fuller, R. W.; Cardellina, J. H.;
McMahon, J. B.; Currens, M. J.; Buckheit, R. W.; Hughes, S. H.; Cragg,
G. M.; Boyd, M. R. J. Med. Chem. 1992, 35, 2735-2743.
(36) Patil, A. D.; Freyer, A. J.; Eggleston, D. S.; Haltiwanger, R. C.;
Bean, M. F.; Taylor, P. B.; Caranfa, M. J.; Breen, A. L.; Bartus, H. R. J.
Med. Chem. 1993, 36, 4131-4138.
(23) Preliminary communications: (a) Nicolaou, K. C.; Pfefferkorn, J.
A.; Cao, G.-Q. Angew. Chem., Int. Ed. 2000, 39, 734-739. (b) Nicolaou,
K. C.; Cao, G.-Q.; Pfefferkorn, J. A. Angew. Chem., Int. Ed. 2000, 39,
739-743.
(24) Nicolaou, K. C.; Pfefferkorn, J. A.; Mitchell, H. J.; Roecker A. J.;
Barluenga, S.; Cao, G.-Q.; Affleck, R. L.; Lillig, J. E. J. Am Chem. Soc.
2000, 122, 9954-9967.
(25) Nicolaou, K. C.; Pfefferkorn, J. A.; Barluenga, S.; Mitchell, H. J.;
Roecker, A. J.; Cao, G.-Q. J. Am. Chem. Soc. 2000, 122, 9968-9976.
(26) For a discussion of favorable properties of small molecule libraries,
see: (a) Martin, E. J.; Critchlow, R. E. J. Comb. Chem. 1999, 1, 32-45.
(b) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeneyt, P. J. AdV.
Drug DeliV. ReV. 1997, 23, 3-25 and references therein. (c) Teague, S. J.;
Davis, A. M.; Leeson, P. D.; Oprea, T. Angew. Chem., Int. Ed. 1999, 38,
3743-3748.
(27) The search of chemical abstracts was performed on SciFinder. A
search for the 2,2-dimethyl-2H-benzopyran moiety [structure 1] revealed
approximately 4000 structures. Inclusion of compounds wherein the double
bond is modified [structure 2]
(37) Nakane, H.; Arisawa, M.; Fujita, A.; Koshimura, S.; Ono, K. FEBS
Lett. 1991, 286, 83-85.
(38) McKee, T. C.; Bokesch, H. R.; McCormick, J. L.; Rashid, M. A.;
Spielvogel, D.; Gustafson, K. R.; Alavanja, M. M.; Cardellina, J. H.; Boyd,
M. R. J. Nat. Prod. 1997, 60, 431-438.
(39) Patil, A. D.; Freyer, A. J.; Eggleston, D. S.; Haltiwanger, R. C.;
Tomcowicz, B.; Breen, A.; Johnson, R. K. J. Nat. Prod. 1997, 60, 306-
308.
(40) Kitagawa, I.; Zhang, R.; Hori, K.; Tsuchiya, K.; Shibuya, H. Chem.
Pharm. Bull. 1992, 40, 2041-2043.
(41) Rao, E. V.; Sridhar, P.; Rao, B. V. L. N.; Ellaiah, P. Phytochemistry
1999, 50, 1417-1418.
(42) (a) Jayasuriya, H.; McChesney, J. D.; Swanson, S. M.; Pezzuto, J.
M. J. Nat. Prod. 1989, 52, 325-331. (b) Jayasuriya, H.; McChesney, J. D.
J. Chem. Soc., Chem. Commun. 1988, 24, 1592-1593.
(43) Fukushina, T.; Tanaka, M.; Gohara, M. Japan Tobacco, Inc., Japan,
Japanese Kokai Tokkyo Koho, JP 98-235173 19980821 [Chem. Abstr. 2000,
132, 179673].
(44) See: Gerha¨user, C.; Lee, S. K.; Kosmeder, J. W.; Moriarty, R. M.;
Hamel, E.; Mehta, R. G.; Moon, R. C.; Pezzuto, J. M. Cancer Res. 1997,
57, 3429-3435 and references therein.
(45) (a) Fang, N.; Casida, J. E. J. Nat. Prod. 1999, 62, 205-210. (b)
Fang, N.; Casida, J. E. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3380-3384.
(46) Wang, B. H.; Ternai, B.; Polya, G. Phytochemistry 1997, 44, 787-
796.
(47) Gschwendt, M.; Mu¨ller, H.-J.; Kielbassa, K.; Zang, R.; Kittstein,
W.; Rincke, G.; Marks, F. Biochem. Biophys. Res. Commun. 1994, 199,
93-98.
(i.e. hydrogenated, hydroxylated, aminohydroxylated, etc.) revealed an
additional 8000 structures. For the diversity implications of this second
search criteria, see the final paper of this series.25