10.1002/chem.201703760
Chemistry - A European Journal
FULL PAPER
T. Halbert, A. R. Urbach, J. Am. Chem. Soc. 2009, 131, 2408-2415; i) S.
Niebling, H. Y. Kuchelmeister, C. Schmuck, S. Schlucker, Chem. Sci.
2012, 3, 3371-3377; j) L. C. Smith, D. G. Leach, B. E. Blaylock, O. A. Ali,
A. R. Urbach, J. Am. Chem. Soc. 2015, 137, 3663-3669; k) E. Faggi, C.
Vicent, S. V. Luis, I. Alfonso, Org. Biomol. Chem. 2015, 13, 11721-
11731; l) S. Sonzini, A. Marcozzi, R. J. Gubeli, C. F. van der Walle, P.
Ravn, A. Herrmann, O. A. Scherman, Angew. Chem. Int. Ed. 2016, 55,
14000-14004.
acidic side chains contribute strongly to the binding of the
imprinted receptors. The enhancement of the binding by the
thiouronium depends on the hydrophobicity of the peptides, and
generally becomes more significant when the peptides become
less hydrophobic. This feature is highly desirable because we
already have a very effective imprinting for hydrophobic peptides
whose hydrophobic groups alone could afford enormous driving
forces to the binding.
These imprinted receptors in general have excellent
selectivities in peptide recognition. In this work, the thiouronium
FM 2 further improved the selectivity, particularly those that
cannot be distinguished by the hydrophobic imprinting alone (i.e.,
aspartic acid and asparagine). A nearly two-fold selectivity
between aspartic and glutamic acids in the tripeptides was
impressive, given their extreme similarities. Importantly, for an
imprinted receptor, all residues and the peptide backbone
contribute to the binding, including glycine. Thus, even relatively
small single-residue-selectivity would be magnified as the chain
gets longer.
Several lines of evidence support that, during the molecular
imprinting of the peptides without the thiouronium FM, the ionic
side chains could interfere with the imprinting of the hydrophobic
residues, as the carboxylate groups and the hydrophobic side
chains prefer different locations in the micelle. The result is
somewhat weaker binding for peptides containing acidic side
chains. In the presence of FM 2, when specific hydrogen bond-
reinforced carboxylate–thiouronium salt bridges exist, the acidic
side chains strengthened the binding while improving the overall
binding selectivity. One clear example is shown in Table 4: WDW,
for example, was bound more strongly by its MINP than WNW (by
its own) in the presence of FM 2; in the absence of the FM, the
opposite trend was observed.
[2] N. Sewald, H.-D. Jakubke, Peptides: chemistry and biology, Wiley-VCH,
Weinheim, 2002.
[3] M. W. Peczuh, A. D. Hamilton, Chem. Rev. 2000, 100, 2479-2494.
[4] a) G. V. Oshovsky, D. N. Reinhoudt, W. Verboom, Angew. Chem. Int.
Ed. 2007, 46, 2366-2393; b) E. A. Kataev, C. Müller, Tetrahedron 2014,
70, 137-167.
[5] a) G. Wulff, Angew. Chem. Int. Ed. Engl. 1995, 34, 1812-1832; b) G.
Wulff, Chem. Rev. 2001, 102, 1-28; c) K. Haupt, K. Mosbach, Chem.
Rev. 2000, 100, 2495-2504; d) L. Ye, K. Mosbach, Chem. Mater. 2008,
20, 859-868; e) K. J. Shea, Trends Polym. Sci. 1994, 2, 166-173; f) B.
Sellergren, in Techniques and instrumentation in analytical chemistry v.
23, Elsevier, Amsterdam, 2001; g) M. Komiyama, Molecular imprinting:
from fundamentals to applications, Wiley-VCH, Weinheim, 2003; h) M.
Yan, O. Ramström, Molecularly imprinted materials: science and
technology, Marcel Dekker, New York, 2005; i) C. Alexander, H. S.
Andersson, L. I. Andersson, R. J. Ansell, N. Kirsch, I. A. Nicholls, J.
O'Mahony, M. J. Whitcombe, J. Mol. Recognit. 2006, 19, 106-180; j) B.
Sellergren, A. J. Hall, in Supramolecular Chemistry: From Molecules to
Nanomaterials (Eds.: J. W. Steed, P. A. Gale), Wiley, Online, 2012; k) K.
Haupt, in Topics in current chemistry,, Springer, Heidelberg ; New York,
2012.
[6] a) J. U. Klein, M. J. Whitcombe, F. Mulholland, E. N. Vulfson, Angew.
Chem. Int. Ed. 1999, 38, 2057-2060; b) H. Nishino, C. S. Huang, K. J.
Shea, Angew. Chem. Int. Ed. 2006, 45, 2392-2396; c) Y. Hoshino, T.
Kodama, Y. Okahata, K. J. Shea, J. Am. Chem. Soc. 2008, 130, 15242-
15243; d) Y. Hoshino, H. Koide, T. Urakami, H. Kanazawa, T. Kodama,
N. Oku, K. J. Shea, J. Am. Chem. Soc. 2010, 132, 6644-6645; e) J. L.
Urraca, C. S. A. Aureliano, E. Schillinger, H. Esselmann, J. Wiltfang, B.
Sellergren, J. Am. Chem. Soc. 2011, 133, 9220-9223; f) S. Banerjee, B.
König, J. Am. Chem. Soc. 2013, 135, 2967-2970; g) A. A. Qader, J.
Urraca, S. B. Torsetnes, F. Tønnesen, L. Reubsaet, B. Sellergren, J.
Chromatogr. A 2014, 1370, 56-62; h) Y. Zhang, C. Deng, S. Liu, J. Wu,
Z. Chen, C. Li, W. Lu, Angew. Chem. Int. Ed. 2015, 54, 5157-5160; i) S.
Schwark, W. Sun, J. Stute, D. Lutkemeyer, M. Ulbricht, B. Sellergren,
RSC Adv. 2016, 6, 53162-53169.
[7] a) S. C. Zimmerman, M. S. Wendland, N. A. Rakow, I. Zharov, K. S.
Suslick, Nature 2002, 418, 399-403; b) S. C. Zimmerman, I. Zharov, M.
S. Wendland, N. A. Rakow, K. S. Suslick, J. Am. Chem. Soc. 2003, 125,
13504-13518.
[8] D. Maity, C. Schmuck, in Synthetic Receptors for Biomolecules: Design
Principles and Applications, The Royal Society of Chemistry, 2015, pp.
326-368.
[9] J. K. Awino, R. W. Gunasekara, Y. Zhao, J. Am. Chem. Soc. 2017, 139,
2188-2191.
Acknowledgements
[10] J. K. Awino, Y. Zhao, J. Am. Chem. Soc. 2013, 135, 12552-12555.
[11] a) L. Mancinelli, F. Chillemi, E. Cardellini, V. Marsili, F. Giavarini, L. De
Angelis, G. Lugaro, G. L. Gianfranceschi, Biol. Chem. 1999, 380, 31-40;
b) E. Castigli, L. Mancinelli, M. A. Mariggio, G. L. Gianfranceschi, Am. J.
Physiol., Cell Physiol. 1993, 265, C1220-C1223; c) T. Huff, C. S. G.
Müller, A. M. Otto, R. Netzker, E. Hannappel, Int. J. Biochem. Cell Biol.
2001, 33, 205-220.
We thank the National Institute of General Medical Sciences of
the National Institutes of Health (R01GM113883) for financial
support of the research.
[12] a) K. Ariga, T. Kunitake, Acc. Chem. Res. 1998, 31, 371-378; b) C. L.
Hannon, E. V. Anslyn, in Bioorganic Chemistry Frontiers (Eds.: H.
Dugas, F. P. Schmidtchen), Springer, Heidelberg, 1993, pp. 193-255; c)
B. P. Orner, A. D. Hamilton, J. Inclusion Phenom. Macrocyc. Chem.
2001, 41, 141-147; d) F. P. Schmidtchen, M. Berger, Chem. Rev. 1997,
97, 1609-1646.
Conflict of interest
The authors declare no conflict of interest.
[13] a) S. Zhang, Y. Zhao, Macromolecules 2010, 43, 4020-4022; b) Y. Zhao,
Langmuir 2016, 32, 5703-5713.
Keywords: peptide binding • molecular recognition • receptor •
[14] A. Albert, R. Goldacre, J. Phillips, J. Chem. Soc. 1948, 2240-2249.
[15] Although S-alkylthiouronium salts can hydrolyze in water, the hydrolysis
usually requires a strongly basic solution (e.g., 2.5 M NaOH) at refluxing
temperatures. For details, see: G. G. Urquhart, J. W. Gates, R. Connor,
Org. Syn. 1941, 21, 36-38.
[16] a) J. K. Awino, Y. Zhao, Chem. Commun. 2014, 50, 5752-5755; b) J. K.
Awino, Y. Zhao, Chem.-Eur. J. 2015, 21, 655-661; c) J. K. Awino, L. Hu,
Y. Zhao, Org. Lett. 2016, 18, 1650-1653; d) J. K. Awino, Y. Zhao, ACS
Biomater. Sci. Eng. 2015, 1, 425-430; e) J. K. Awino, R. W. Gunasekara,
Y. Zhao, J. Am. Chem. Soc. 2016, 138, 9759-9762; f) R. W.
Gunasekara, Y. Zhao, J. Am. Chem. Soc. 2017, 139, 829-835; g) J. K.
Awino, Y. Zhao, Org. Biomol. Chem. 2017, 15, 4851-4858.
molecular imprinting • micelle
[1] a) J. I. Hong, S. K. Namgoong, A. Bernardi, W. C. Still, J. Am. Chem.
Soc. 1991, 113, 5111-5112; b) R. Breslow, Z. Yang, R. Ching, G.
Trojandt, F. Odobel, J. Am. Chem. Soc. 1998, 120, 3536-3537; c) M. A.
Hossain, H.-J. Schneider, J. Am. Chem. Soc. 1998, 120, 11208-11209;
d) H. Yamamura, M. V. Rekharsky, Y. Ishihara, M. Kawai, Y. Inoue, J.
Am. Chem. Soc. 2004, 126, 14224-14233; e) S. Tashiro, M. Tominaga,
M. Kawano, B. Therrien, T. Ozeki, M. Fujita, J. Am. Chem. Soc. 2005,
127, 4546-4547; f) A. T. Wright, E. V. Anslyn, J. T. McDevitt, J. Am.
Chem. Soc. 2005, 127, 17405-17411; g) C. Schmuck, P. Wich, Angew.
Chem. Int. Ed. 2006, 45, 4277-4281; h) J. J. Reczek, A. A. Kennedy, B.
This article is protected by copyright. All rights reserved.