11262
J. Am. Chem. Soc. 2000, 122, 11262-11263
Scheme 1. Asymmetric Synthesis of Tricyclic Core
Enantioselective Total Synthesis of (-)-Galanthamine
Barry M. Trost* and F. Dean Toste
Department of Chemistry
Stanford UniVersity
Stanford, California 94305
ReceiVed June 22, 2000
(-)-Galanthamine (1),1 the parent member of the galanthamine-
type Amaryllidaceae alkaloids, has recently received significant
attention as a selective acetylcholinesterase inhibitor and, con-
sequently, for its potential clinical application for the treatment
of Alzheimer’s disease.2 An efficient synthesis of 1 is needed
since its extraction from daffodils is low-yielding (0.1-2% dry
weight)3 and it has been reported that native sources are
threatened.4 To date, all syntheses of galanthamine have utilized
a biomimetic oxidative bisphenol coupling5 to create the critical
spiro quaternary carbon6 of narwedine 2, which is converted into
1 by diastereoselective reduction. The only reported asymmetric
synthesis of a galanthamine alkaloid relies on the oxidative
coupling of L-tyrosine to prepare unnatural (+)-galanthamine.7,8
Herein, we report a versatile approach for the enantioselective
synthesis of the galanthamine alkaloids.
(a) 3% 6, 1% [η3-C3H5PdCl]2, (C2H5)3N, CH2Cl2, rt. (b) PhCH3, -78°.
(c) 2,6-Lutidine, CH2Cl2, rt. (d) Proton sponge, DMA, 80°.
ortho-halophenol and then employ an intramolecular Heck
reaction10 to prepare the crucial quaternary center. To this end,
palladium-catalyzed reaction of 2-bromovanillin (4)11 with car-
bonate 512 (available in two steps from glutaraldehyde and the
Emmons-Wadsworth-Horner reagent) in the presence of ligand
613 furnished the required aryl ether (7) in 72% yield and with
88% enantiomeric excess on a 24 mmol scale (Scheme 1).
Gratifyingly, good enantioselectivity could be obtained despite
the fact that phenol 4 is ortho-disubstituted and that cyclohexene
5 bears a C2-substitutent. Surprisingly, the aryl ethers obtained
from the palladium-catalyzed AAA of 5 are of the opposite
absolute stereochemistry to those obtained in the AAA reactions
of unsubstituted cyclohexenyl carbonates.14 Investigation of the
reasons for this reversal are ongoing and will be reported in due
course.
All attempts to effect the intramolecular Heck reaction of aryl
ether 7 failed, resulting primarily in ionization of phenol 4. An
earlier report15 suggested that the presence of electron-withdrawing
subsitutents on the phenol favored the palladium-catalyzed
ionization over the intramolecular Heck reaction. Therefore, 7
was reduced with DIBAL-H and the resulting diol protected with
TBDMS-triflate to afford bis-TBDMS ether 8 in 89% yield from
7. Heck reaction of 8 did not prove straightforward. The conditions
developed by Overman10,16 for formation of quaternary centers
produced only poor yields of 9 as did the Jeffery-type conditions
reported by Larock.15 Under these conditions, ionization of the
phenol persisted as the major pathway. Utilizing tri(tolyl)-
phosphine as ligand (20% Pd(OAc)2, 40% (otol)3P or 20% of the
preformed palladacycle17) suppressed the ionization reaction;
Our strategy was to first form the O5-C4a bond by a
palladium-catalyzed asymmetric allylic alkylation (AAA)9 of an
(1) For reviews see: (a) Hoshino, O. In The Alkaloids; Cordell, G. A.,
Ed.; Academic Press: New York, 1998; Vol. 51, pp 323-424. (b) Martin, S.
F. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1987; Vol.
30, pp 251-376.
(2) (a) Rainer, M. Drugs Today 1997, 33, 273. (b) Mucke, H. A. M. Drugs
Today 1997, 33, 251. (c) Gaicobini, E. Neurochem. Int. 1998, 32, 413. (d)
Weinstock, M. CNS Drugs 1999, 12, 307. (e) Unni, K. CNS Drugs 1998, 10,
447. (f) Nordberg, A.; Svensson, A. L. Drug Safety 1998, 19, 45.
(3) Shieh, W.-C.; Carlson, J. A. J. Org. Chem. 1994, 59, 5463.
(4) Poulev, A.; Deus-Nuemann, B.; Zenk, M. H. Planta Med. 1993, 59,
442.
(5) (a) Barton, D. H. R.; Kirby, G. W. J. Chem. Soc. 1962, 806. (b)
Kametani, T.; Yamaki, K.; Terui, T. J. Heterocycl. Chem. 1973, 10, 35. (c)
Vlahov, R.; D. Krikorian, D.; Spassov, G.; Chinoua, M.; Ulahov, F.; Parushev,
S.; Snatzke, G.; Ernst, L.; Klieslich, K.; Abraham, W.-R.; Sheldrick, W. S.
Tetrahedron 1988, 45, 3329. (d) Szewczyk, J.; Wilson, J. W.; Lewin, A. H.;
Carroll, F. I. J. Heterocycl. Chem. 1995, 32, 195. (e) Chaplin, D. A.; Fraser,
N.; Tiffin, P. D. Tetrahedron Lett. 1997, 38, 7931. (f) Czollner, L.; Frantsits,
W.; Ku¨enberg, B.; Hedenig, U.; Fro¨hlich, J.; Jordis, U. Tetrahedron Lett. 1998,
39, 2087. (g) Kita, Y.; Arisawa, M.; Gyoten, M.; Nakajima, M.; Hamada, R.;
Tohma, H.; Takada, T. J. Org. Chem. 1998, 63, 6625. (h) Ku¨enburg, B.;
Czollner, L.; Fro¨hlich, J.; Jordis, U. Org. Process Res. ReV. 1999, 3, 425.
(6) A variety of methods have been used to prepare this center in syntheses
of (()-lycoramine 3: (a) Gras. E.; Guillou, C.; Thal., C. Tetrahedron Lett.
1999, 40, 9243. (b) Ishizaki, M.; Ozaki, K.; Kanematsu, A.; Isoda, T.; Hoshino,
O. J. Org. Chem. 1993, 58, 3877. (c) Parker, K. A.; Kim, H.-J. J. Org. Chem.
1992, 57, 752. (d) Holton, R. A.; Sibi, M. P.; Murphy, W. S. J. Am. Chem.
Soc. 1988, 110, 314. (e) Ackland, D. J.; Pinhey, J. T. J. Chem. Soc., Perkin
Trans. 1 1987, 2695. (f) Sa˜nchez, I. H.; Soria, J. J.; Lo´pez, F. J.; Larraza, M.
I.; Flores, H. J. J. Org. Chem. 1984, 49, 157 (g) Martin, S. F.; Garrison, P. J.
J. Org. Chem. 1982, 47, 1512. (h) Schultz, A. G.; Yee, Y. K.; Berger, M. H.
J. Am. Chem. Soc. 1977, 99, 8065.
(9) (a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 815. (b)
Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 9074. (c) Trost, B.
M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 3543. (d) Trost, B. M.; Toste,
F. D. J. Am. Chem. Soc. 1999, 121, 4545. (e) Trost, B. M.; Tsui, H.-C.; Toste,
F. D. J. Am. Chem. Soc. 2000, 122, 3534.
(10) For recent examples of intramolecular Heck reaction of allyl aryl ethers
to form quaternary centers, see: (a) Frey, D. A.; Duan, C.; Hudlicky, T. Org.
Lett. 1999, 1, 2085. (b) Liou, J.-P.; Cheng, C. Y. Tetrahedron Lett. 2000, 41,
915. For a review of the intramolecular Heck reaction, see: (c) Gibson, S.
E.; Middleton, R. J.Contemp. Org. Synth. 1996, 3, 447.
(11) Toth, J. E.; Hamann, P. R.; Fuchs, P. L. J. Org. Chem. 1988, 53,
4694.
(12) (a) Villie´ras, J.; Rambaud, M.; Graff, M. Synth. Commun. 1986, 16,
149. (b) Amri, H.; Rambaud, M.; Villie´ras, J. Tetrahedron 1990, 49, 3535.
(13) Trost, B. M.; van Vranken, D. L.; Bingel, C. J. Am. Chem. Soc. 1992,
114, 9327.
(7) (a) Shimizu, K.; Tomioka, K.; Yamada, S.; Koga, K. Chem. Pharm.
Bull. 1978, 26, 3765. (b) Shimizu, K.; Tomioka, K.; Yamada, S.; Koga, K.
Heterocycles 1977, 8, 277.
(8) For resolution of narwedine, see: (a) Kametani, T.; Premila, M. S.;
Fukumoto, K. Heterocycles 1976, 4, 1111. (b) Chaplin, D. A.; Johnson, N.
B.; Paul, J. M.; Potter, G. A. Tetrahedron Lett. 1998, 39, 6777.
(14) The assignment of the absolute configuration derives by analogy to
the reaction of 5 with p-methoxyanisole for which the product was correlated
to a known compound and by completion of the synthesis to (-)-galanthamine.
(15) Larock, R. C.; Stinn, D. E. Tetrahedron Lett. 1988, 29, 4687.
(16) Hong, C. Y.; Kado, N.; Overman, L. E. J. Am. Chem. Soc. 1993, 115,
11028.
10.1021/ja002231b CCC: $19.00 © 2000 American Chemical Society
Published on Web 10/25/2000