C O M M U N I C A T I O N S
Table 2. Enantioselective [4 + 2] Cycloaddition of 1a-e
Catalyzed by Diphosphine-Rh Complexes Bearing Chiral Dienes
bidentate fashion, can be eliminated because [Rh{(S,S)-BDPP}-
(COD)]SbF6 or combination of [Rh(COD)2]SbF6 with (S,S)-BDPP
is inactive. Therefore, it can be proposed that chiral dienes
coordinate to rhodium in monodentate fashion in the enantiodis-
criminating step A.
In summary, we have succeeded in a highly enantioselective
intramolecular [4 + 2] cycloaddition catalyzed by cationic chiral
Rh complexes bearing not only chiral phosphine but also chiral
diene. This is the first example of asymmetric synergy between
chiral dienes and diphosphines. Further studies on the synergy effect
on asymmetric catalysis are underway.14
Supporting Information Available: Typical experimental proce-
dures and spectral data for 1, 2, and [RhCl(diene*)]2. This material is
entry
substrate
diene*
PP* ligand
time
yield (%)b
ee (%)c
1
2
3
4
5
6
7
8
1a
1a
1a
1a
1a
1a
1a
1a
1a
1a
1a
1b
1c
1a
1d
1e
3
3
3
3
3
3
3
3
3
4
5
4
3
3
3
3
30 min
(S,S)-CHIRAPHOS 1 h
91
61
27
51
81
94
90
96
85
82
68
51
91
99
89
97
26
22
30
26
29
28
88
-9d
26
91
87
81
93
95
86
98
References
(S)-BINAP
(R)-BINAP
(S)-DM-BINAP
(R)-DM-BINAP
3 h
3 h
30 min
30 min
(1) (a) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. ComprehensiVe Asymmetric
Catalysis; Springer: Berlin, 1999; Vols. 1-3. (b) Yamamoto, H. Lewis
Acids in Organic Synthesis; Wiley-VCH: New York, 2000; Vols. 1-2.
(c) Kobayashi, S.; Jørgensen, K. A. Cycloaddition Reaction in Organic
Synthesis; Wiley-VCH: New York, 2002. (d) Lautens, M.; Klute, W.;
Tam, W. Chem. ReV. 1996, 96, 49-92.
(R,R)-Me-DUPHOS 40 min
(S,S)-Me-DUPHOS 60 min
(2) Evans, P. A. Modern Rhodium-Catalyzed Organic Reactions; Wiley-
VCH: New York, 2005.
9a
10
11
12
13
14
15
16
PPh3
30 min
(3) Intramolecular [4 + 2] cycloaddition: (a) Wender, P. A.; Jenkins, T. E.
J. Am. Chem. Soc. 1989, 111, 6432-6434. (b) Jolly, R. S.; Luedtke, G.;
Sheehan, D.; Livinghouse, T. J. Am. Chem. Soc. 1990, 112, 4965-4966.
(c) Wender, P. A.; Jenkins, T. E.; Suzuki, S. J. Am. Chem. Soc. 1995,
117, 1843-1844. (d) Wender, P. A.; Smith, T. E. J. Org. Chem. 1996,
61, 824-825. (e) Gilbertson, S. R.; Hoge, G. S. Tetrahedron Lett. 1998,
39, 2075-2078. (f) Kumar, K.; Jolly, R. S. Tetrahedron Lett. 1998, 39,
3047-3048. (g) Paik, S. J.; Son, S. U.; Chung, Y. K. Org. Lett. 1999, 1,
2045-2047. (h) Wang, B.; Cao, P.; Zhang, X. Tetrahedron Lett. 2000,
41, 8041-8044. (i) Motoda, D.; Kinoshita, H.; Shinokubo, H.; Oshima,
K. Angew. Chem., Int. Ed. 2004, 43, 1860-1862. (j) Yoo, W. J.; Allen,
A.; Villeneuve, K.; Tam, W. Org. Lett. 2005, 7, 5853-5856. (k) Lee, S.
I.; Park, S. Y.; Park, J. H.; Jung, I. G.; Choi, S. Y.; Chung, Y. K. J. Org.
Chem. 2006, 71, 91-96. (l) Saito, A.; Ono, T.; Takahashi, A.; Taguchi,
T.; Hanzawa, Y. Tetrahedron Lett. 2006, 47, 891-895.
(R,R)-Me-DUPHOS 2 h
(R,R)-Me-DUPHOS 50 min
(R,R)-Me-DUPHOS 2.5 h
(R,R)-Me-DUPHOS 5 h
(R,R)-Et-DUPHOS
(R,R)-Et-DUPHOS
(R,R)-Et-DUPHOS
2 h
2 h
1.5 h
a Rh:ligand:AgSbF6 ) 1:2.2:2. b Isolated yield. c Enantiopurity was
determined by chiral GC analysis on a CP-cyclodextrin-â-2,3,6-M-19.
d Opposite configuration.
(4) Intermolecular [4 + 2] cycloaddition: (a) Matsuda, I.; Shibata, M.; Sato,
S.; Izumi, Y. Tetrahedron Lett. 1987, 28, 3361-3362. (b) Murakami, M.;
Ubukata, M.; Itami, K.; Ito, Y. Angew. Chem., Int. Ed. 1998, 37, 2248-
2250. (c) Paik, S. J.; Son, S. U.; Chung, Y. K. Org. Lett. 1999, 1, 2045-
2047.
(5) For the Rh(I) catalysts, see: (a) McKinstry, L.; Livinghouse, T.
Tetrahedron 1994, 50, 6145-6154. (b) O’Mahony, D. J. R.; Belanger,
D. B.; Livinghouse, T. Synlett 1998, 443-445. (c) Gilbertson, S. T.; Hoge,
G. S.; Genov, D. G. J. Org. Chem. 1998, 63, 10077-10080. (d) Heath,
H.; Wolfe, B.; Livinghouse, T.; Bae, S. K. Synthesis 2001, 2341-2347.
For the Ir(I) catalysts, see: (e) Shibata, T.; Takasaku, K.; Takesue, Y.;
Hirata, N.; Takagi, K. Synlett 2002, 1681-1682.
(6) Bakos, J.; To´th, I.; Heil, B.; Marko´, L. J. Organomet. Chem. 1985, 279,
23-29.
(7) Mikami, K.; Yusa, Y.; Hatano, M.; Wakabayashi, K.; Aikawa, K. Chem.
Commun. 2004, 98-99.
(8) (a) Lei, A.; He, M.; Wu, S.; Zhang, X. Angew. Chem., Int. Ed. 2002, 41,
3457-3460. (b) Lei, A.; He, M.; Zhang, X. J. Am. Chem. Soc. 2002,
124, 8198-8199. (c) Lei, A.; Waldkirch, J. P.; He, M.; Zhang, X. Angew.
Chem., Int. Ed. 2002, 41, 4526-4529.
Figure 1. Plausible reaction mechanism.
pair. The enantioselectivity was increased to 91% ee by 4 instead
of 3 (entry 10). In the case of 5, the enantioselectivity slightly
decreased (entry 11). A variety of Rh complexes bearing a achiral
diene, such as COD or NBD, have been used for catalytic
cycloadditions.3-5,7,8 However, there has been no report on the effect
of dienes in detail.
Dieneyne substrates 1b-e with aromatic terminal substituents
were further examined under the optimized conditions. The reactions
were shown to be effective with both electron-withdrawing and
-donating aromatic substituents. Specifically, CF3 substituents 1e
gave the highest level of enantioselectivity by use of (R,R)-Et-
DUPHOS (97%, 98% ee) (entry 16).
In a plausible mechanism (Figure 1), the substrate-coordinated
intermediate A forms, and then oxidative cyclization3a,b,h of dieneyne
substrate 1 affords the metallacyclopentane. Subsequently, allyl
rearrangement and, finally, the reductive elimination produces the
desired cyclization product 2. Another possible intermediate B,
where both chiral diene and diphosphine coordinate to Rh in
(9) Dang, T. P.; Kagan, H. B. J. Chem. Soc., Chem. Commun. 1971, 481-
482.
(10) Burk, M. J. J. Am. Chem. Soc. 1991, 113, 8518-8519.
(11) Recently, chiral dienes have successfully been applied as effective ligands
for asymmetric reactions. In our case, the C1 symmetrical chiral dienes,
which were reported by Carreira et al., were selected due to easy
preparation from a commercially available carvone: (a) Hayashi, T.;
Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125,
11508-11509. (b) Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E. M.
J. Am. Chem. Soc. 2004, 126, 1628-1629. (c) La¨ng, F.; Breher, F.; Stein,
D.; Gru¨tzmacher, H. Organometallics 2005, 24, 5148-5158.
(12) Fryzuk, M. D.; Bosnich, B. J. Am. Chem. Soc. 1977, 99, 6262-6267.
(13) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, T.; Ito, K.; Souchi, T.;
Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932-7934.
(14) (a) Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am.
Chem. Soc. 1995, 117, 2675-2676. (b) Noyori, R.; Ohkuma, T. Angew.
Chem., Int. Ed. 2001, 40, 40-73. (c) Matsukawa, S.; Mikami, K.
Tetrahedron: Asymmetry 1995, 6, 2571-2574. (d) Matsukawa, S.; Mikami,
K. Enantiomer 1996, 1, 69-73. (e) Mikami, K.; Matsukawa, S. Nature
1997, 385, 613-615. (f) Mikami, K.; Terada, M.; Korenaga, T.;
Matsumoto, Y.; Ueki, M.; Angelaud, R. Angew. Chem., Int. Ed. 2000,
39, 3532-3556. (g) Mikami, K.; Aikawa, K.; Yusa, Y.; Jodry, J. J.;
Yamanaka, M. Synlett 2002, 10, 1561-1578.
JA0650100
9
J. AM. CHEM. SOC. VOL. 128, NO. 39, 2006 12649