Research Council (EPSRC) for financial support, and the
EPSRC Mass Spectrometry Service (Swansea, UK) for valuable
experimental assistance. We would also like to thank Dr
Angelo J. Amoroso (Cardiff), Dr Athanasia Dervisi (Cardiff)
and Professor Andrew Harrison (Edinburgh) for valuable
discussion.
References
1 P. Chaudhuri and K. Wieghardt, Prog. Inorg. Chem., 1987, 35,
329; P. V. Bernhardt and G. A. Lawrance, Coord. Chem. Rev.,
1990, 104, 297; K. P. Wainwright, Coord. Chem. Rev., 1997, 35,
166.
˜
2 (a) O. Schlager, K. Wieghardt, H. Grondey, A. RufiOska and
B. Nuber, Inorg. Chem., 1995, 34, 6440; (b) O. Schlager, K.
Wieghardt and B. Nuber, Inorg. Chem., 1995, 34, 6449; (c) O.
Schlager, K. Wieghardt and B. Nuber, Inorg. Chem., 1995, 34, 6456.
3 T. Koike, T. Gotoh, A. Aoki, E. Kimura and M. Shiro, Inorg. Chim.
Acta, 1998, 270, 424.
4 (a) L.-S. Choi and G. E. Collins, Chem. Commun., 1998, 893;
(b) G. E. Collins, L. S. Choi and J. H. Callahan, J. Am. Chem. Soc.,
1998, 120, 1474.
Fig. 5 (a) X-Band EPR spectrum of [CuII(L1)][ClO4]2 doped in [ZnII-
(L1)][ClO4]2 at 100 K.
from the relative magnitudes of the g and A anisotropies. Alter-
natively this may be interpreted as a rhombic feature. This sys-
tem is currently the subject of an ENDOR and multi-frequency
EPR study which will be described in a subsequent paper.
A plausible analysis for the distortion in [Cu(L1)]2ϩ may be
made by noting that the co-ordination polyhedra as defined by
the six nitrogen donor atoms of [Fe(L1)]2ϩ, [Ni(L1)]2ϩ and
[Cu(L1)]2ϩ are very similar with the mean M–N bond lengths
spanning a narrow range (2.09–2.12 Å). Here it appears that by
confining three donors within a macrocycle, and by having rigid
aryl pendant arms bearing the remaining three donors, the
degrees of torsional freedom available to the ligand are greatly
restricted. As a final indicator of the inflexibility of L1, the co-
ordination geometry observed for [CuII(L1)]2ϩ is in contrast to
that of [CuII(L)]2ϩ, with the latter complex found to be five-co-
ordinate in the solid state with distorted square pyramidal
geometry.2b In [CuII(L)]2ϩ the additional methylene group
between the pendant aniline and the macrocycle permits one of
the pendant groups to rotate away from the metal centre to
yield a five-co-ordinate metal centre. This is not possible in
the case of L1, in which rotation of the pendant arm about
the N–Ar bond results in an unfavourable steric interaction of
the pendant amine group and the macrocyclic methylene
residues.
5 For recent examples see: B. Albela, E. Bill, O. Brosch, T.
Weyhermüller and K. Wieghardt, Eur. J. Inorg. Chem., 2000, 139;
M. Di Vaira, F. Mani and P. Stoppioni, Inorg. Chim. Acta, 2000, 297,
61; S. J. Brudenell, L. Spiccia, A. M. Bond, G. D. Fallon, D. C. R.
Hockless, G. Lazarev, P. J. Mahon and E. R. T. Tiekink, Inorg.
Chem., 2000, 39, 881; L. M. Berreau, J. A. Halfen, V. G. Young, Jr.
and W. B. Tolman, Inorg. Chim. Acta, 2000, 297, 115; J. Müller,
A. Kikuchi, E. Bill, T. Weyhermüller, P. Hiderbrandt, L. Ould-
Moussa and K. Wieghardt, Inorg. Chim. Acta, 2000, 297, 265; M. Di
Vaira, F. Mani and P. Stoppioni, Eur. J. Inorg. Chem., 1999, 833;
T. Glaser, F. Kesting, T. Beissel, E. Bill, T. Weyhermüller, W. Meyer-
Klaucke and K. Wieghardt, Inorg. Chem., 1999, 38, 722; T. Glaser,
E. Bill, T. Weyhermüller, W. Meyer-Klaucke and K. Wieghardt,
Inorg. Chem., 1999, 38, 2632; B. Albela, E. Bothe, O. Brosch,
K. Mochiazuki, T. Weyhermüller and K. Wieghardt, Inorg. Chem.,
1999, 38, 5131; R. Schnepf, A. Sololowski, J. Müiller, V. Bachier,
K. Wieghardt and P. Hildebrandt, J. Am. Chem. Soc., 1998, 120,
2352; F. N. Penkert, T. Weyhermüller and K. Wieghardt, Chem.
Commun., 1998, 557; H. Weller, T. A. Kaden and G. Hopfgarten,
Polyhedron, 1998, 17, 4543; M. Koikawa, K. B. Jensen, H.
Matsushima, T. Tokii and H. Toflund, J. Chem. Soc., Dalton Trans.,
1998, 1085; M. Di Vaira, F. Mani and P. Stoppioni, J. Chem. Soc.,
Dalton Trans., 1998, 3209; S. J. Brudenell, L. Spiccia, A. M.
Bond, P. C. Mahon and D. C. R. Hockless, J. Chem. Soc., Dalton
Trans., 1998, 3919; A. Sokolowski, B. Adam, T. Weyhermüller,
A. Kikuchi, K. Hildenbrand, R. Schnepf, P. Hildebrandt, E. Bill
and K. Wieghardt, Inorg. Chem., 1997, 36, 3702; B. Adam, E. Bill,
E. Bothe, B. Goerdt, G. Haselhorst, K. Hildenbrand, A.
Sokolowski, S. Steenken, T. Weyhermüller and K. Wieghardt,
Chem. Eur. J., 1997, 3, 308; M. Di Vaira, F. Mani and P. Stoppioni,
J. Chem. Soc., Dalton Trans., 1997, 1375; T. Beissel, F. Birkelbach,
E. Bill, T. Glaser, F. Kesting, C. Krebs and K. Wieghardt, J. Am.
Chem. Soc., 1996, 118, 12376.
6 D. A. House, in Comprehensive Co-ordination Chemistry, eds.
G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon Press,
Oxford, 1987, vol. 2, p. 59.
7 D. R. Marks, D. J. Phillips and J. P. Redfern, J. Chem. Soc. A, 1967,
1464.
8 G. J. Grant and D. J. Royer, J. Am. Chem. Soc., 1981, 103, 867.
9 K. Wieghardt, W. Schmidt, B. Nuber and J. Weiss, Chem. Ber., 1979,
112, 2220.
10 D. D. Perrin and W. F. A. Amarego, Purification of Laboratory
Chemicals, Pergamon, Oxford, 1988.
11 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
12 G. M. Sheldrick, SHELXL 96, Program for Crystal Structure
Refinement, University of Göttingen, 1996.
13 Ortep 3 for Windows, A Version of ORTEP III with a Graphical
User Interface (GUI), L. J. Farrugia, J. Appl. Crystallogr., 1997, 30,
565.
14 J. C. A. Boeyens, A. G. S. Forbes, R. D. Hancock and K. Wieghardt,
Inorg. Chem., 1985, 24, 19226.
15 J. Li, Z. Chen, J. J. Emge and D. M. Proserpio, Inorg. Chem., 1997,
36, 1437.
[ZnII(L1)][ClO4]2 4. Reaction of L1 with Zn(ClO4)2ؒ6H2O in
refluxing ethanol afforded [ZnII(L1)][ClO4]2 4 as colourless
microcrystals. Despite repeated attempts, crystals of [ZnII(L1)]-
[ClO4]2 failed to yield workable X-ray crystallographic data.
The 1H NMR spectrum of the complex in acetonitrile solution
indicated that it is C3 symmetric in solution. All three aromatic
pendant groups are equivalent and the macrocyclic methylene
groups have been resolved into two complex multiplets at δ 3.60
and 2.99. These latter resonances are tentatively assigned as due
to endo- and exo- protons of the macrocyclic chelate rings. The
pendant aniline NH2 groups in the “free” ligand occur as a
broad singlet at δ 4.17 (in CD3CN solution) and shift to a broad
singlet at δ 4.56 upon co-ordination. This implies that in solu-
tion all six N-donors are co-ordinated. The 1H NMR was found
not to change significantly when recorded over the temperature
range of Ϫ40 to ϩ70 ЊC. This observation suggests that over
the experimental temperature range the [ZnII(L1)]2ϩ cation is
non-fluxional in solution. This is in contrast to the behaviour of
[ZnII(L)]2ϩ which displayed a complex, temperature-dependant
NMR spectrum.2a Again it can be seen that the larger pendant
chelate rings of L1 permit greater torsional flexibility in the
co-ordinated ligand system.
16 R. A. Palmer and T. S. Piper, Inorg. Chem., 1966, 5, 864.
17 L. J. Zompa, Inorg. Chem., 1978, 17, 2531.
18 C. K. Jørgensen, Acta Chem. Scand., 1955, 9, 1362.
19 R. D. Hancock and G. J. McDougall, J. Chem. Soc., Dalton Trans.,
1977, 67.
Acknowledgements
We wish to thank the Engineering and Physical Sciences
3638
J. Chem. Soc., Dalton Trans., 2000, 3632–3639