ChemComm
Communication
Table 2 Redox potentials (V) and HOMO–LUMO levels (eV) of Sc3N@Ih-
C80 and its derivatives
The Strategic Japanese–Spanish Cooperative Program funded
by JST and MICINN and the US NSF (CHE-0527015) is gratefully
acknowledged.
Compound
Eo2x
Eo1x
Er1ed
Er2ed
Er3ed
HOMO LUMO
c
Sc3N@Ih-C80 1.09 0.59 ꢀ1.26 ꢀ1.62 ꢀ2.37 ꢀ6.47 ꢀ2.58
0.64b 0.23b ꢀ1.15a ꢀ1.57a ꢀ2.33a ꢀ6.13 ꢀ2.79
0.63b 0.31b ꢀ1.11a ꢀ1.51a ꢀ2.28a ꢀ6.11 ꢀ2.80
0.60b 0.30b ꢀ1.11a ꢀ1.50a ꢀ2.23a ꢀ6.14 ꢀ2.79
0.59b 0.30b ꢀ1.10a ꢀ1.49a ꢀ2.22a ꢀ6.10 ꢀ2.80
Notes and references
2a
2b
3a
3b
1 (a) A. A. Popov, S. Yang and L. Dunsch, Chem. Rev., 2013, 113,
5989–6113; (b) X. Lu, L. Feng, T. Akasaka and S. Nagase, Chem. Soc.
Rev., 2012, 41, 7723–7760; (c) Endofullerenes, ed. T. Akasaka and
S. Nagase, Kluwer Academic Publishers, Dordrecht, 2002; (d) Chemistry
Nanocarbons, ed. T. Akasaka, F. Wudl and S. Nagase, John Wiley & Sons,
Chichester, 2010; (e) Y. Maeda, T. Tsuchiya, X. Lu, Y. Takano, T. Akasaka
and S. Nagase, Nanoscale, 2011, 3, 2421–2429; ( f ) M. N. Chaur, F. Melin,
A. L. Ortiz and L. Echegoyan, Angew. Chem., Int. Ed., 2009, 48, 7514–7538.
2 (a) S. Stevenson, G. Rice, T. Glass, K. Harish, F. Cromer, M. R. Jordan,
J. Craft, E. Hadju, R. Bible, M. M. Olmstead, K. Maitra, A. J. Fisher,
A. L. Balch and H. C. Dorn, Nature, 1999, 401, 55–57; (b) J. Zhang,
S. Stevenson and H. C. Dorn, Acc. Chem. Res., 2013, 46, 1548–1557.
3 (a) E. B. Iezzi, J. C. Duchamp, K. Harich, T. E. Glass, H. M. Lee,
M. M. Olmstead, A. L. Balch and H. C. Dorn, J. Am. Chem. Soc., 2002,
124, 524–525; (b) H. M. Lee, M. M. Olmstead, E. Iezzi, J. C. Duchamp,
H. C. Dorn and A. L. Balch, J. Am. Chem. Soc., 2002, 124, 3494–3495.
a
Half-wave potential, V vs. Fc/Fc+ in ODCB containing 0.1 M nBu4NPF6.
Values are obtained by DPV, a quasi-reversible process. Ref. 12k.
b
c
alkoxycarbonyl group located at hexagon side) and 3b (addition
pattern B, the alkoxycarbonyl group located at pentagon side) were
determined based on the NMR and theoretical calculations.
Dorn et al. reported that [5,6]-Sc3N@Ih-C80-(CH2)2NTrt was
obtained as the thermodynamically favorable product and [6,6]-
Sc3N@Ih-C80-(CH2)2NTrt was obtained as the kinetically favorable
product from the reaction of N-triphenylmethyl-5-oxazolidinone via
the corresponding azomethine ylide.12e When an azomethine ylide
was prepared from N-alkylglycine and an aldehyde, [5,6]-Sc3N@
Ih-C80-(CH2)2NR (R: Me or Et) was obtained as the thermodynamically
favorable product.12a,b The relative energy difference between
[5,6]- and [6,6]-Sc3N@Ih-C80-(CH2)(CHCO2CH3)NtBu was calculated
using the M06-2X method. The results showed that the [5,6]-adduct
is the thermodynamically favorable product (Fig. S21, ESI†). There-
fore, 2 and 3 were obtained as the thermodynamically preferred
mono-adducts under the reflux conditions in ODCB.
The redox properties of 2 and 3 were determined from the results
of cyclic voltammetry (CV) and differential pulse voltammetry (DPV)
measurements (Table 2 and Fig. S20, ESI†). Compounds 2 and 3
exhibited three reversible reduction and two quasi-reversible
oxidation patterns. The reversible cathodic behavior of 2 and 3
is consistent with previously reported results for [5,6]-pyrrolidino-
M3N@Ih-C80 derivatives.12d,j,k The identical electrochemical behavior
of 2 and 3 indicates that the position of the alkoxycarbonyl
group in 2 and 3 does not affect the electronic properties of
pyrrolidino-Sc3N@Ih-C80.
In conclusion, we have conducted the reaction of Sc3N@Ih-C80
with aziridine, which affords the corresponding [5,6]-pyrrolidino-
Sc3N@Ih-C80 as an isolable pair of diastereomers of pyrrolidino-EMF
derivatives. Aziridines are effective reagents to introduce two func-
tional groups on Sc3N@Ih-C80. Adducts 2 and 3, which are the first
example of an isolated pair of the diastereomers, were characterized
on the basis of absorption measurement, NMR analysis, cyclic
voltammetry, and X-ray crystallography. The characteristic absorp-
tion spectra and cyclic voltammograms afford useful information to
determine the addition patterns, [5,6]- or [6,6]-addition. In addition,
2 and 3 show characteristic 1H NMR signals of methine and
methylene protons in the pyrrolidine-ring, which give valuable
information for the assignment of a pair of [5,6]-pyrrolidino-
Sc3N@Ih-C80 diastereomers.
´
4 (a) F.-F. Li, J. R. Pinzon, B. Q. Mercado, M. M. Olmstead, A. L. Balch
and L. Echegoyen, J. Am. Chem. Soc., 2011, 133, 1563–1571; (b) G.-W.
Wang, T.-X. Liu, M. Jiao, N. Wang, S.-E. Zhu, C. Chen, S. Yang,
F. L. Bowles, C. M. Beavers, M. M. Olmstead, B. Q. Mercado and
A. L. Balch, Angew. Chem., Int. Ed., 2011, 50, 4658–4662.
5 Y. Iiduka, T. Wakahara, T. Nakahodo, T. Tsuchiya, A. Sakuraba,
Y. Maeda, T. Akasaka, K. Yoza, E. Horn, T. Kato, M. T. H. Liu,
N. Mizorogi, K. Kobayashi and S. Nagase, J. Am. Chem. Soc., 2005,
127, 12500–12501.
6 E. B. Iezzi, F. Cromer, P. Stevenson and H. C. Dorn, Synth. Met.,
2002, 128, 289–291.
7 (a) Y. Iiduka, O. Ikenaga, A. Sakuraba, T. Wakahara, T. Tsuchiya,
Y. Maeda, T. Nakahodo, T. Akasaka, M. Kako, N. Mizorogi and
S. Nagase, J. Am. Chem. Soc., 2005, 127, 9956–9957; (b) T. Wakahara,
Y. Iiduka, O. Ikenaga, T. Nakahodo, A. Sakuraba, T. Tsuchiya,
Y. Maeda, M. Kako, T. Akasaka, K. Yoza, E. Horn, N. Mizorogi and
S. Nagase, J. Am. Chem. Soc., 2006, 128, 9919–9925.
8 (a) N. B. Shustova, A. A. Popov, M. A. Mackey, C. E. Coumbe, J. P. Phillips,
S. Stevenson, S. H. Strauss and O. V. Boltalina, J. Am. Chem. Soc., 2007,
129, 11676–11677; (b) C. Shu, T. Cai, L. Xu, T. Zuo, J. Reid, K. Harich,
H. C. Dorn and H. W. Gibson, J. Am. Chem. Soc., 2007, 129, 15710–15717;
(c) C. Shu, C. Slebodnick, L. Xu, H. Champion, T. Fuhrer, T. Cai, J. E. Reid,
W. Fu, K. Harich, H. C. Dorn and H. W. Gibson, J. Am. Chem. Soc., 2008,
130, 17755–17760.
9 T.-X. Liu, T. Wei, S.-E. Zhu, G.-W. Wang, M. Jiao, S. Yang, F. L. Bowles,
M. M. Olmstead and A. L. Balch, J. Am. Chem. Soc., 2012, 134,
11956–11959.
10 (a) M. Prato and M. Maggini, Acc. Chem. Res., 1998, 31, 519–526;
(b) N. Tagmatarchis and M. Prato, Synlett, 2003, 768–779.
´
´
11 (a) S. Filippone, E. E. Maroto, A. Martın-Domenech, M. Suarez and
´
N. Martın, Nat. Chem., 2009, 1, 578–582; (b) E. E. Maroto, S. Filippone,
´
´
´
A. Martın-Domenech, M. Suarez and N. Martın, J. Am. Chem. Soc.,
´
2012, 134, 12936–12938; (c) E. E. Maroto, S. Filippone, M. Suarez,
´
´
´
´
R. Martınez-Alvarez, A. de Cozar, F. P. Cossıo and N. Martın, J. Am.
Chem. Soc., 2014, 136, 705–712; (d) E. E. Maroto, M. Izquierdo,
´
M. Murata, S. Filippone, K. Komatsu, Y. Murata and N. Martın, Chem.
Commun., 2014, 50, 740–742.
12 (a) T. Cai, Z. Ge, E. B. Iezzi, T. E. Glass, K. Harich, H. W. Gibson and
H. C. Dorn, Chem. Commun., 2005, 3594–3596; (b) C. M. Cardona,
´
A. Kitaygorodskiy, A. Ortiz, M. A. Herranz and L. Echegoyen, J. Org.
Chem., 2005, 70, 5092–5097; (c) C. M. Cardona, A. Kitaygorodskiy
and L. Echegoyan, J. Am. Chem. Soc., 2005, 127, 10448–10453;
(d) C. M. Cardona, B. Elliott and L. Echegoyan, J. Am. Chem. Soc.,
2006, 128, 6480–6485; (e) T. Cai, C. Slebodnick, L. Xu, K. Harich,
T. E. Glass, C. Chancellor, J. C. Fettinger, M. M. Olmstead, A. L.
Balch, H. W. Gibson and H. C. Dorn, J. Am. Chem. Soc., 2006, 128,
6486–6492; ( f ) L. Echegoyan, C. J. Chancellor, C. M. Cardona,
B. Elliott, J. Rivera, M. M. Olmstead and A. L. Balch, Chem. Commun.,
Financial support from research on Innovative Areas
(20108001, ‘‘pi-Space’’), Grants-in-Aid for Scientific Research
(A) (202455006) and (B) (24350019, 26286012), a Specially
Promoted Research Grant (22000009) from the Ministry of
Education, Culture, Sports, Science, and Technology of Japan,
´
2006, 2653–2655; (g) A. Rodrıguez-Fortea, J. M. Campanera,
C. M. Cardona, L. Echegoyan and J. M. Poblet, Angew. Chem., Int. Ed.,
2006, 118, 8356–8360; (h) N. Chen, E.-Y. Zhang, K. Tan, C.-R. Wang and
12554 | Chem. Commun., 2014, 50, 12552--12555
This journal is ©The Royal Society of Chemistry 2014