COMMUNICATIONS
reaction mixture was stirred for 1 hbefore it was allowed to warm to
ambient temperature. After the mixture had been stirred for a further 24 h,
a cloudy yellow/brown solution was produced. The mixture was filtered
through Celite, cooled to À208C, and left to stand for 12 h, resulting in the
precipitation of small, colorless crystals of 1. Yield 60.5%; m.p. >3008C; IR
Crystallographic Data Centre as supplementary publication no.
CCDC-142922. Copies of the data can be obtained free of charge on
application to CCDC, 12 Union Road, Cambridge CB21EZ, UK =fax:
=44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
[10] a) D. A. Atwood, D. Rutherford, Organometallics 1996, 15, 436;
b) D. A. Atwood, D. Rutherford, J. Am. Chem. Soc. 1996, 118, 11535.
[11] Gaussian 94, revision E. 2. No constraints were used in any of the
calculations. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill,
B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A.
Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham,
V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B.
Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala,
W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts,
R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P.
Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, Gaussian Inc.,
PittsburghPA, 1995.
=Nujol): nÄ 1775 cmÀ1 =Al H); elemental analysis calcd for C60H94Al4Li4-
À
N6O6 =%): C 63.72, H 8.32, N 7.43; found: C 63.45, H 7.55, N 8.70; 1HNMR
=variable-temperature studies showed only one set of resonances =with
broadening) in the range 300 ± 193 K; 400.13 MHz, C6D6, 300 K): d 7.76
=d, 2H; o-H, Ph), 7.16 =t, 2H; m-H, Ph), 6.74 =t, 1H; p-H, Ph), 5.40 =v br.,
1H; AlH), 2.88 =q, 4H; OCH2), 0.60 =t, 6H; CH3); 13CNMR =100.62 MHz,
C6D6, 300 K): d 156.70 =i-C; Ph), 129.21 =m-C; Ph), 124.88 =o-C; Ph),
7
117.58 =p-C; Ph), 65.33 =OCH2), 13.66 =CH3); Li NMR =variable-temper-
ature studies showed only a single resonance in the range 300 ± 213 K but
the appearance of a second resonance at 193 K; 155.51 MHz, referenced to
LiCl in D2O, [D8]toluene, 193 K): d 6.75, d 6.58; 27Al NMR =C6D6, 298 K,
52.12 MHz, referenced to AlCl3 in D2O): d 131.30, 69.91.
Received: April 25, 2000 [Z15042]
[1] A. C. Jones, Chem. Soc. Rev. 1997, 101.
[2] a) H. Yamomoto in Organometallics in Synthesis =Ed.: M. Schlosser),
Wiley, Chichester, UK, 1994, chap. 7; b) Y. Koide, S. G. Bott, A. R.
Barron, J. Am. Chem. Soc. 1993, 115, 4971.
[3] M. A. Petrie, S. C. Shoner, H. V. R. Dias, P. P. Power, Angew. Chem.
1990, 102, 1061; Angew. Chem. Int. Ed. Engl. 1990, 29, 1033.
[4] a) M. Driess, S. Kuntz, K. Merz, H. Pritzkow, Chem. Eur. J. 1998, 4,
1628; b) R. E. Allan, M. A. Beswick, P. R. Raithby, A. Steiner, D. S.
Wright, J. Chem. Soc. Dalton Trans. 1996, 4153; c) R. E. Allan, M. A.
Beswick, N. L. Cromhout, M. A. Paver, P. R. Raithby, A. Steiner, M.
Trevithick, D. S. Wright, Chem. Commun. 1996, 1501.
[5] a) A. J. Edwards, M. A. Paver, P. R. Raithby, M.-A. Rennie, C. A.
Russell, D. S. Wright, Angew. Chem. 1994, 106, 1334; Angew. Chem.
Int. Ed. Engl. 1994, 33, 1277; b) M. A. Beswick, N. Choi, C. N. Harmer,
A. D. Hopkins, M. McPartlin, M. A. Paver, P. R. Raithby, A. Steiner,
M. Tombul, D. S. Wright, Inorg. Chem. 1998, 37, 2177; c) M. A.
Beswick, J. M. Goodman, C. N. Harmer, A. D. Hopkins, M. A. Paver,
P. R. Raithby, A. E. H. Wheatley, D. S. Wright, Chem. Commun. 1997,
1879.
New Fused Bicyclic Cyclotrigermanes from
Cycloaddition Reactions of Cyclotrigermene**
Norihisa Fukaya, Masaaki Ichinohe, and
Akira Sekiguchi*
The chemistry of three- and four-membered ring systems
consisting of Group 14 elements heavier than carbon is a
subject of considerable interest.[1] The thermal and photo-
chemical conversion of cyclotrigermanes into digermenes and
germylenes is well established and has been used for the
synthesis of a variety of novel germanium compounds.[2]
However, cyclotrigermane derivatives incorporating a bicyclic
system are completely unknown for synthetic reasons.[3, 4]
Most of the cyclotrigermane derivatives were synthesized by
the simple reductive coupling reaction of the corresponding
diorganodihalogermane with the appropriate reducing
agents.[1, 2] Recently, we succeeded in synthesizing a variety
of cyclotrigermene analogues of cyclopropene by reaction of
the cyclotrigermenium ion with nucleophiles.[5] The reactivity
of the cyclotrigermenes is of special interest, since cyclo-
[6] L. Zsolnai, G. Huttner, M. Driess, Angew. Chem. 1993, 105, 1549;
Angew. Chem. Int. Ed. Engl. 1993, 32, 1439.
[7] a) P. Kosse, E. Popowski, M. Veith, V. Huch, Chem. Ber. 1994, 127,
2103; b) D. J. Brauer, H. Bürger, G. R. Liewald, J. Wilke, J. Organo-
met. Chem. 1985, 287, 305; c) D. J. Brauer, H. Bürger, G. R. Liewald, J.
Organomet. Chem. 1986, 308, 119; d) G. Huber, A. Jockisch, H.
Schmidbaur, Z. Naturforsch. B 1999 54, 8; e) M. Veith, A. Spaniol, J.
Pöhlmann, F. Gross, V. Huch, Chem. Ber. 1993, 126, 2625; f) M. Driess,
G. Huttner, N. Knopf, H. Pritzkow, L. Zsolnai, Angew. Chem. 1995,
107, 354; Angew. Chem. Int. Ed. Engl. 1995, 34, 316.
addition to the endocyclic Ge Ge bond could provide access
[8] J. L. Atwood, F. R. Bennett, F. M. Elms, C. Jones, C. L. Raston, K. D.
Robinson, J. Am. Chem. Soc. 1991, 113, 8183.
to new bicyclic compounds. We now report the synthesis of the
first bicyclic cyclotrigermane derivatives by the reaction of a
mesityl-substituted cyclotrigermene withisoprene, 2,3-di-
methyl-1,3-butadiene, and phenylacetylene.
[9] Crystal structure data for 1: C60H94Al4Li4N6O6, Mr 1131.1, colorless
plates, cut to approximately 0.60 Â 0.40 Â 0.20 mm. MoKa graphite-
monochromated radiation =l 0.71069 ), T 123 K; monoclinic,
space group C2/c; a 22.035=6), b 12.818=3), c 46.487=6) ; b
After the successful synthesis of tetrakis=tri-tert-butylsilyl)-
cyclotrigermene =tBu3Si)4Ge3 =1a)[6] and tetrakis=tri-tert-bu-
tylgermyl)cyclotrigermene =tBu3Ge)4Ge3 =1b)[6] by reaction
of GeCl2=dioxane) with tBu3SiNa or tBu3GeLi, we presumed
that the cyclotrigermenes should be suitable as precursors of
90.581=15)8; V 13129=5) 3, Z 8, m 0.121 mmÀ1
,
1calcd
1.144 MgmÀ3, 2qmax 468, 8786 reflections collected, 8509 unique
used =Rm 0.0650). The structure was solved and refined on F2 using
published programs and techniques =a) A. Altomare, M. C. Burla, M.
Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, G. Polidori, J.
Appl. Crystallogr. 1994, 27, 435; b) G. M. Sheldrick, SHELXL-97.
University of Gottingen, Germany, 1997) to convergence at R1
0.0917 =for 4592 reflections with I > 2s=I)), wR2 0.2271 and S
1.064 for 777 parameters. Maximum residual electron density
0.505 eÀ3. Several factors combined to adversely affect the quality
of the solution. The crystals reacted with the oil used to mount them
and the large c axis gave overlapping reflections. Additionally the
ether groups of the cation were severely disordered over two sites
each. There was also some movement in the phenyl ring bonded to N6.
Crystallographic data =excluding structure factors) for the structure
reported in this paper have been deposited with the Cambridge
[*] Prof. Dr. A. Sekiguchi, Dipl.-Chem. N. Fukaya, Dr. M. Ichinohe
Department of Chemistry, University of Tsukuba
Tsukuba, Ibaraki 305-8571 =Japan)
Fax : =81)298-53-4314
[**] This work was supported by a Grant-in-Aid for Scientific Research
=Nos. 10304051, 12020209, 12042213) from the Ministry of Education,
Science and Culture of Japan, and TARA =Tsukuba Advanced
ResearchAlliance) Fund.
Angew. Chem. Int. Ed. 2000, 39, No. 21
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
1433-7851/00/3921-3881 $ 17.50+.50/0
3881