SCHEME 1
An Im p r oved Syn th esis of a Keton e
Ca ta lyst for Asym m etr ic Ep oxid a tion of
Olefin s
Lianhe Shu, Yu-Mei Shen, Christopher Burke,
David Goeddel, and Yian Shi*
Department of Chemistry, Colorado State University,
Fort Collins, Colorado 80523
SCHEME 2. Or igin a l Syn th esis of Keton e 2
yian@lamar.colostate.edu
Received October 30, 2002
Abstr a ct: An efficient synthesis of a ketone catalyst for
asymmetric epoxidation of olefins from D-glucose in six steps
is described.
Dioxiranes generated in situ from chiral ketones have
been shown to be highly enantioselective for the asym-
metric epoxidation of olefins.1-3 Previously, we reported
that fructose-derived ketone 1 is an effective epoxidation
catalyst and gives high ee’s for a variety of trans- and
trisubstituted olefins (Scheme 1).4 Recently, we reported
that ketone 2, a nitrogen analogue of 1, provides encour-
agingly high ee’s for the epoxidation of cis-olefins and
* To whom correspondence should be addressed. Phone: 970-491-
7424. Fax: 970-491-1801.
(1) For general leading references on dioxiranes, see: (a) Adam, W.;
Curci, R.; Edwards, J . O. Acc. Chem. Res. 1989, 22, 205. (b) Murray,
R. W. Chem. Rev. 1989, 89, 1187. (c) Curci, R.; Dinoi, A.; Rubino, M.
F. Pure Appl. Chem. 1995, 67, 811. (d) Clennan, E. L. Trends Org.
Chem. 1995, 5, 231.
(2) For reviews on chiral ketone-catalyzed asymmetric epoxidation,
see: (a) Denmark, S. E.; Wu, Z. Synlett 1999, 847. (b) Frohn, M.; Shi,
Y. Synthesis 2000, 1979.
styrenes.5 The drawback of our original synthesis of
ketone 2 is that it requires nine steps and some expensive
reagents (Scheme 2), which makes this ketone catalyst
less convenient. Considering that this ketone catalyst can
potentially be useful, efforts have been made to improve
its synthesis.
The original and improved syntheses of ketone 2 are
outlined in Schemes 2 and 3 respectively. All steps have
been improved except for the preparation of 1-dibenzyl-
amino-1-deoxy-D-fructose (3) via the Amadori rearrange-
ment. For the ketalization of compound 3, it was found
that the reaction gave cleaner products if quenched before
all the starting material was consumed. Compound 4 can
then be obtained in 80-87% yield by a simple filtration
through a short column of silica gel. For the hydrogena-
tion of compound 4, the original procedure is sensitive
to the purity of the starting material, and the hydrogena-
tion product, amino alcohol 5, seems to be unstable. Both
the reaction and the purification of products need to be
carried out carefully. In our subsequent studies, it was
found that the hydrogenation could be facilitated by
addition of acetic acid, and the resulting product could
be used for the next step without further purification.
The initial attempt to directly form the oxazolidinone
(5 to 6) using COCl2-Et3N was unsuccessful.6 In the
(3) For leading references on asymmetric epoxidation mediated in
situ by chiral ketones, see: (a) Curci, R.; Fiorentino, M.; Serio, M. R.
J . Chem. Soc., Chem. Commun. 1984, 155. (b) Curci, R.; D’Accolti, L.;
Fiorentino, M.; Rosa, A. Tetrahedron Lett. 1995, 36, 5831. (c) Denmark,
S. E.; Forbes, D. C.; Hays, D. S.; DePue, J . S.; Wilde, R. G. J . Org.
Chem. 1995, 60, 1391. (d) Brown, D. S.; Marples, B. A.; Smith, P.;
Walton, L Tetrahedron 1995, 51, 3587. (e) Yang, D.; Yip, Y. C.; Tang,
M. W.; Wong, M. K.; Zheng, J . H.; Cheung, K. K. J . Am. Chem. Soc.
1996, 118, 491. (f) Yang, D.; Wang, X.-C.; Wong, M.-K.; Yip, Y.-C.; Tang,
M.-W. J . Am. Chem. Soc. 1996, 118, 11311. (g) Song, C. E.; Kim, Y.
H.; Lee, K. C.; Lee, S. G.; J in, B. W. Tetrahedron: Asymmetry 1997, 8,
2921. (h) Adam, W.; Zhao, C.-G. Tetrahedron: Asymmetry 1997, 8, 3995.
(i) Denmark, S. E.; Wu, Z.; Crudden, C. M.; Matsuhashi, H. J . Org.
Chem. 1997, 62, 8288. (j) Wang, Z.-X.; Shi, Y. J . Org. Chem. 1997, 62,
8622. (k) Adam, W.; Fell, R. T.; Saha-Moller, C. R.; Zhao, C.-G.
Tetrahedron: Asymmetry 1998, 9, 397. (l) Armstrong, A.; Hayter, B.
R. Chem. Commun. 1998, 621. (m) Yang, D.; Wong, M.-K.; Yip, Y.-C.;
Wang, X.-C.; Tang, M.-W.; Zheng, J .-H.; Cheung, K.-K. J . Am. Chem.
Soc. 1998, 120, 5943. (n) Yang, D.; Yip, Y.-C.; Chen, J .; Cheung, K.-K.
J . Am. Chem. Soc. 1998, 120, 7659. (o) Adam, W.; Saha-Moller, C. R.;
Zhao, C.-G. Tetrahedron: Asymmetry 1999, 10, 2749. (p) Carnell, A.
J .; J ohnstone, R. A. W.; Parsy, C. C.; Sanderson, W. R. Tetrahedron
Lett. 1999, 40, 8029. (q) Armstrong, A.; Hayter, B. R. Tetrahedron 1999,
55, 11119. (r) Armstrong, A.; Hayter, B. R.; Moss, W. O.; Reeves, J .
R.; Wailes, J . S. Tetrahedron: Asymmetry 2000, 11, 2057. (s) Solladie-
Cavallo, A.; Bouerat, L. Org. Lett. 2000, 2, 3531. (t) Bortolini, O.;
Fogagnolo, M.; Fantin, G.; Maietti, S.; Medici, A. Tetrahedron: Asym-
metry 2001, 12, 1113. (u) Seki, M.; Furutani, T.; Imashiro, R.; Kuroda,
T.; Yamanaka, T.; Harada, N.; Arakawa, H.; Kusama, M.; Hashiyama,
T. Tetrahedron Lett. 2001, 42, 8201. (v) Armstrong, A.; Moss, W. O.;
Reeves, J . R. Tetrahedron: Asymmetry 2001, 12, 2779. (w) Matsumoto,
K.; Tomioka, K. Tetrahedron Lett. 2002, 43, 631. (x) Stearman, C. J .;
Behar, V. Tetrahedron Lett. 2002, 43, 1943. (y) Denmark, S. E.;
Matsuhashi, H. J . Org. Chem. 2002, 67, 3479. (z) Shing, T. K. M.;
Leung, G. Y. C. Tetrahedron 2002, 58, 7545.
(4) (a) Tu, Y.; Wang, Z.-X.; Shi, Y. J . Am. Chem. Soc. 1996, 118,
9806. (b) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J .-R.; Shi, Y. J . Am.
Chem. Soc. 1997, 119, 11224. (c) Shu, L.; Shi, Y. Tetrahedron 2001,
57, 5213.
(5) (a) Tian, H.; She, X.; Shu, L.; Yu, H.; Shi, Y. J . Am. Chem. Soc.
2000, 122, 11551. (b) Tian, H.; She, X.; Xu, J .; Shi, Y. Org. Lett. 2001,
3, 1929. (c) Tian, H.; She, X.; Yu, H.; Shu, L.; Shi, Y. J . Org. Chem.
2002, 67, 2435.
10.1021/jo0206770 CCC: $25.00 © 2003 American Chemical Society
Published on Web 05/15/2003
J . Org. Chem. 2003, 68, 4963-4965
4963