Imine-Vinylidene-Osmium(II) Derivatives
Organometallics, Vol. 19, No. 25, 2000 5455
of the alkynyl group at the Câ atom affords the vi-
nylidene derivatives.3 In agreement with the last, the
electrophilic addition to alkynyl complexes has shown
to be also a general strategy to prepare vinylidene
complexes.2 In addition, the deoxygenation of acylmetal
derivatives by treatment with (CF3SO2)2O,4 the depro-
tonation of metal carbynes,5 the rearrangement of
alkylidene metallacyclobutane species,6 and the reduc-
tion of allenylidene compounds should be mentioned.7
With some exceptions,8 from hydride complexes, the
most favored pathway is the insertion of the triple bond
of terminal alkynes into the M-H bonds to form alkenyl
intermediates, which undergo R-hydrogen elimination.9
The dehydrochlorination of chloroalkenyl compounds
has been also used.2,10
nucleophilic attack, to form functionalized amines.13 In
particular, complexes containing N-protio imines with
low molecular weight have proven difficult to isolate.
The reaction of Cr(CO)5{dC(OMe)Me} with oximes of
aliphatic, alicyclic, and aromatic ketones affords Cr-
(CO)5(NHdCRR′), including dimethyl imine.14 Related
compounds of chromium, molybdenum, tungsten, and
iron have been prepared from the corresponding metal-
ammonia starting materials and ketones.15 The benzo-
phenone imine derivatives M(CO)5(NHdCPh2) (M ) Cr,
W) have been synthesized by reaction of M(CO)5(dCPh2)
with trimethylsilyl azide.16 Gladysz and co-workers have
reported imine complexes of the type [Re(η5-C5H5)(NO)-
(NHdCRR′)(PPh3)][CF3SO3], which are obtained by
displacement of triflate by the free imine or by addition
of nucleophiles to cationic nitrile complexes followed by
protonation.17 Complexes Os(C2Ph)2(CO)(NHdCPh2)-
(PiPr3)218 and MHCl(CO)(NHdCPh2)(PiPr3)2 (M ) Ru,19a
Os19b) have been obtained by addition of benzophenone
imine to the corresponding five-coordinate precursors.
Imine complexes are intermediate states during the
transformations between amine and nitrile deriva-
tives.11 However, there are comparatively few examples
of monodentate nitrogen-bonded imine compounds, as
a consequence of the weak Lewis basicity of the imine
nitrogen atom,12 and the vulnerability of the imines to
The protonation of OsH(CO)(NHdC(Ph)C6H4}(CO)-
(PiPr3)2 with HBF4‚OEt2 gives [OsH(CO)(NHdCPh2)-
(PiPr3)2]BF4, which by reaction with carbon monoxide
or trimethyl phosphite affords [OsH(CO)(NHdCPh2)L-
(PiPr3)2]BF4 [L ) CO, P(OMe)3].20 Half-sandwich ruthe-
nium and osmium complexes containing aldimine and
benzophenone imine ligands have been also synthe-
sized.21
(3) (a) Silvestre, J .; Hoffmann, R. Helv. Chem. Acta 1985, 68, 1461.
(b) Wakatsuki, Y.; Koga, N.; Yamazaki, H.; Morokuma, K. J . Am.
Chem. Soc. 1994, 116, 8105. (c) de los Rios, I.; J ime´nez-Tenorio, M.;
Puerta, M. C.; Valerga, P. J . Chem. Soc., Chem. Commun. 1995, 1757.
(d) Wakatsuki, Y.; Koga, N.; Werner, H.; Morokuma, K. J . Am. Chem.
Soc. 1997, 119, 360. (e) de los Rios, I.; J ime´nez-Tenorio, M.; Puerta,
M. C.; Valerga, P. J . Am. Chem. Soc. 1997, 119, 6529. (f) Bustelo, E.;
J ime´nez-Tenorio, M.; Puerta, M. C.; Valerga, P. Organometallics 1999,
18, 950. (g) Bustelo, E.; J ime´nez-Tenorio, M.; Puerta, M. C.; Valerga,
P. Organometallics 1999, 18, 4563. (h) Puerta, M. C.; Valerga, P. Coord.
Chem. Rev. 1999, 193-195, 977. (i) Baya, M.; Crochet, P.; Esteruelas,
M. A.; Gutie´rrez-Puebla, E.; Lo´pez, A. M.; Modrego, J .; On˜ate, E.; Vela,
N. Organometallics 2000, 19, 2585.
We have recently reported that the dihydride-
dichloro complex OsH2Cl2(PiPr3)2 reacts with acetone
oxime and cyclohexanone oxime in the presence of Et3N
to give the dihydride derivatives OsH2Cl(κ2-ONdCR2)-
(4) (a) Boland-Lussier, B. E.; Churchill, M. R.; Hughes, R. P.;
Rheingold, A. L. Organometallics 1982, 1, 628. (b) Bly, R. S.; Raja,
M.; Bly, R. K. Organometallics 1992, 11, 1220.
(PiPr3)2 [CR2 ) CMe2, C(CH2)4CH2],22 which afford the
corresponding hydride-azavinylidene-osmium(IV) com-
plexes OsHCl2(dNdCR2)(PiPr3)2 by addition of HCl.23
As a part of our work on the reactivity of transition
(5) (a) Baker, P. K.; Barber, G. K.; Green, M.; Welch, A. J . J . Am.
Chem. Soc. 1980, 102, 7811. (b) Gill, D. S.; Green, M. J . Chem Soc.,
Chem. Commun. 1981, 1037. (c) Bourgault, M.; Castillo, A.; Esteruelas
M. A.; On˜ate, E.; Ruiz, N. Organometallics 1997, 16, 636. (e) Esteru-
elas, M. A.; Oliva´n, M.; On˜ate, E.; Ruiz, N.; Tajada, M. A. Organome-
tallics 1999, 18, 2953. (e) Buil, M. L.; Eisenstein, O.; Esteruelas, M.
A.; Garc´ıa-Yebra, C.; Gutie´rrez-Puebla, E.; Oliva´n, M.; On˜ate, E.; Ruiz,
N.; Tajada M. A. Organometallics 1999, 18, 8, 4949. (f) Buil, M. L.;
Esteruelas, M. A.; Garc´ıa-Yebra, C.; Gutie´rrez-Puebla, E.; Oliva´n, M.
Organometallics 2000, 19, 2184.
(6) Buchwald, S. L.; Grubbs, R. H. J . Am. Chem. Soc. 1983, 105,
5490.
(7) Crochet, P.; Esteruelas, M. A.; Lo´pez, A. M.; Ruiz, N.; Tolosa, J .
I. Organometallics 1998, 17, 3479.
(8) (a) Esteruelas, M. A.; Oro L. A.; Valero, C. Organometallics 1995,
14, 3596. (b) Crochet P.; Esteruelas, M. A.; Lo´pez, A. M.; Mart´ınez,
M.-P.; Oliva´n, M.; On˜ate, E.; Ruiz, N. Organometallics 1998, 17, 4500.
(9) (a) van Asselt, A.; Burger, B. J .; Gibson, V. C.; Bercaw, J . E. J .
Am. Chem. Soc. 1986, 108, 5347. (b) Dziallas, M.; Werner, H. J .
Organomet. Chem. 1987, 333, C29. (c) Beckhaus, R.; Thiele, K.-H.;
Stro¨hl, D. J . Organomet. Chem. 1989, 369, 43. (d) Bell, T. W.;
Haddleton, D. M.; McCamley, A.; Partridge, M. G.; Perutz, R. N.;
Willner, H. J . Am. Chem. Soc. 1990, 112, 9212. (e) Gibson, V. C.;
Parkin, G.; Bercaw, J . E. Organometallics 1991, 10, 220. (f) Beckhaus,
R. J . Chem. Soc., Dalton Trans. 1997, 1991. (g) Luinstra, G. A.; Teuben,
J . H. Organometallics 1992, 11, 1793. (h) Beckhaus, R. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 686. (i) Alvarado, Y.; Boutry, O.; Gutie´rrez,
E.; Monge, A.; Nicasio, M. C.; Poveda, M. L.; Pe´rez, P. J .; Ru´ız, C.;
Bianchini, C.; Carmona E. Chem. Eur. J . 1997, 3, 860. (j) Oliva´n, M.;
Clot, E.; Eisenstein, O.; Caulton, K. G. Organometallics 1998, 17, 3091.
(10) Weinand, R.; Werner, H. J . Chem. Soc., Chem. Commun. 1985,
1145.
(11) (a) Ridd, M. J .; Keene, F. R. J . Am. Chem. Soc. 1981, 103, 5733.
(b) Adcock, P. A.; Keene, F. R. J . Am. Chem. Soc. 1981, 103, 6494. (c)
Feng, S. G.; Templeton, J . L. J . Am. Chem. Soc. 1989, 111, 6477. (d)
Feng, S. G.; Templeton, J . L. Organometallics 1992, 11, 1295. (e) Yeh,
W.-Y.; Ting, C.-S.; Peng, S.-M.; Lee, G.-H. Organometallics 1995, 14,
1417. (f) Gunnoe, T: B.; White, P. S.; Templeton, J . L. J . Am. Chem.
Soc. 1996, 118, 6916. (g) Francisco, L. W.; White, P. S.; Templeton, J .
L. Organometallics 1996, 15, 5127.
(13) (a) Hoberg, H.; Go¨tz, V.; Kru¨ger, C.; Tsay, Y. H.J . Organomet.
Chem. 1979, 169, 209. (b) Buchwald, S. L.; Watson, B. T.; Wannama-
ker, M. W.; Dewan, J . C. J . Am. Chem. Soc. 1989, 111, 4486. (c) Durfee,
L. D.; Hill, J . E.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1990,
9, 75. (d) Martin, G. C.; Boncella, J . M.; Wucherer, E. J . Organome-
tallics 1991, 10, 2804. (e) Faller, J . W.; Ma, Y.; Smart, C. J .; Diverdi,
M. J . J . Organomet. Chem. 1991, 420, 237. (f) Richter-Addo, G. B.;
Knight, D. A.; Dewey, M. A.; Arif, A. M.; Gladysz, J . A. J . Am. Chem.
Soc. 1993, 115, 11863. (g) Cantrell, W. R., J r.; Richter-Addo, G. B.;
Gladysz, J . A. J . Organomet. Chem. 1994, 472, 195.
(14) Fischer, E. O.; Knauss, L. Chem. Ber. 1970, 103, 1262.
(15) Sellmann, D.; Thallmair, E. J . Organomet. Chem. 1979, 164,
337.
(16) Fischer, H.; Zeuner, S. J . Organomet. Chem. 1985, 286, 201.
(17) (a) Knight, D. A.; Dewey, M. A.; Stark, G. A.; Bennett, B. K.;
Arif, A. M.; Gladysz, J . A. Organometallics 1993, 12, 4523. (b) Stark,
G. A.; Gladysz, J . A. Inorg. Chem. 1996, 35, 5509.
(18) Esteruelas, M. A.; Lahoz, F. J .; Lo´pez, A. M.; On˜ate, E.; Oro,
L. A. Organometallics 1995, 14, 2496.
(19) (a) Bohanna, C.; Esteruelas, M. A.; Lo´pez A. M.; Oro L. A. J .
Organomet. Chem. 1996, 526, 73. (b) Daniel, T.; Werner, H. Z.
Naturforsch. B 1992, 47, 1707.
(20) Albe´niz, M. J .; Buil, M. L.; Esteruelas, M. A.; Lo´pez, A. M. J .
Organomet. Chem. 1997, 545-546, 495.
(21) (a) Faller, J . W.; Ma, Y.; Smart, C. J .; Diverdi, M. J . J .
Organomet. Chem. 1991, 420, 273. (b) Daniel, T.; Mu¨ller, M.; Werner,
H. Inorg. Chem. 1991, 30, 3120. (c) Daniel, T.; Knaup, W.; Dziallas,
M.; Werner, H. Chem. Ber. 1993, 126, 1981. (d) Werner, H.; Daniel,
T.; Knaup, W.; Nu¨rnberg, O. J . Organomet. Chem. 1993, 462, 309. (e)
Werner, H.; Daniel, T.; Braun, T.; Nu¨rnberg, O. J . Organomet. Chem.
1994, 480, 145.
(22) Castarlenas, R.; Esteruelas, M. A.; Gutie´rrez-Puebla, E.; J ean,
Y.; Lledo´s, A.; Mart´ın, M.; Toma`s, J . Organometallics 1999, 18, 4296.
(23) Castarlenas, R.; Esteruelas, M. A.; Gutie´rrez-Puebla, E.; J ean,
Y.; Lledo´s, A.; Mart´ın, M.; On˜ate, E,; Toma`s, J . Organometallics 2000,
19, 3100.
(12) Mehrota, R. C. In Comprehensive Coordination Chemistry;
Wilkinson, G.; Gillard, R. D., McCleverty, J . A., Eds.; Pergamon:
Oxford, England, 1987; Vol 2, pp 269-287.