D. R. Clay, M. C. McIntosh / Tetrahedron Letters 53 (2012) 1691–1694
1693
Scheme 5. Schematic mechanism of transfer hydrogenation.
3. (a) Qi, W.; McIntosh, M. C. Tetrahedron 2008, 64, 7021–7025; (b) Hutchison, J.
M.; Gibson, A. S.; Williams, D. T.; McIntosh, M. C. Tetrahedron Lett. 2011, 52,
6349–6351; (c) Clay, D. R.; Rosenberg, A. G.; McIntosh, M. C. Tetrahedron:
Asymmetry 2011, 22, 713–716.
4. See, for example: (a) Miyagi, M.; Takehara, J.; Collet, S.; Okano, K. Org. Process
Res. Dev. 2000, 4, 346–348; (b) Hansen, K. B.; Chilenski, J. R.; Desmond, R.;
Devine, P. N.; Grabowski, E. J. J.; Heid, R.; Kubryk, M.; Mathrea, D. J.; Varsolonab,
R. Tetrahedron: Asymmetry 2003, 14, 3581–3587; (c) Tanis, S. P.; Evans, B. R.;
Nieman, J. A.; Parke, T. T.; Taylor, W. D.; Heasley, S. E.; Herrinton, P. M.;
Perrault, W. R.; Hohler, R. A.; Dolak, L. A.; Hesterf, M. R.; Seestg, E. P.
Tetrahedron: Asymmetry 2006, 17, 2154–2182; (d) Zhang, J.; Blazecka, P. G.;
Bruendl, M. M.; Huang, Y. J. Org. Chem. 2009, 74, 1411–1414.
5. For reviews, see: (a) Ohkuma, T.; Noyori, R. Enantioselective Ketone and b-Keto
Ester Hydrogenations Including Mechanisms In Handbook of Homogeneous
Hydrogenation; De Vries, J. G., Elsevier, C. J., Eds.; WILEY-VCH: Weinheim, 2007;
Vol. 3, pp 1105–1163; (b) Blacker, A. J., Enantioselective Transfer
Hydrogenation, ibid, pp 1215–1244.; (c) Ikariya, T.; Blacker, A. J. Acc. Chem.
Res. 2007, 40, 1300–1308; (d) Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35,
226–236; (e) Ikariya, T.; Murataa, K.; Noyori, R. Org. Biomol. Chem. 2006, 4, 393–
406; (f) Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2001, 40, 40–73.
6. (a) Albrecht, W. Just. Liebig. Ann. Chem. 1906, 343, 31–49; (b) Oda, M.; Kawase,
T.; Okada, T.; Enomoto, T. Org. Syn. 1996, 73, 253–257.
Scheme 6. Transfer hydrogenation transition states with explicit methanol or
water molecule.
7. O’Brien, D. F.; Gates, J. W., Jr. J. Org. Chem. 1965, 30, 2593–2601.
8. Hannedouche, J.; Kenny, J. A.; Walsgrove, T.; Wills, M. Synlett 2002, 263–266;
(a) Peach, P.; Cross, D. J.; Kenny, J. A.; Mann, I.; Houson, I.; Campbell, L.;
Walsgrove, T.; Wills, M. Tetrahedron 2006, 62, 1864–1876; (b) Kosjek, B.;
Tellers, D. M.; Biba, M.; Farr, R.; Moore, J. C. Tetrahedron: Asymmetry 2006, 17,
2798–2803.
9. Hennig, M.; Püntener, K.; Scalone, M. Tetrahedron: Asymmetry 2000, 11, 1849–
1858.
10. Porter, R. F.; Rees, W. W.; Frauenglass, E.; Wilgus, H. S., III; Nawn, G. H.; Chiesa,
P. P.; Gates, J. W., Jr. J. Org. Chem. 1964, 29, 588–594.
11. Experimental procedure: Formic acid (0.6 mL, 16 mmol) was added dropwise
to triethylamine (1.18 mL, 16 mmol) at À10 °C. The mixture was diluted with
acetonitrile (100 mL) and Ru(p-cymene)(S,S-TsDPEN) (0.04 g, 0.067 mmol,
0.67 mol %) was added, followed by enedione 2 (1.74 g, 10 mmol, 0.1 M). The
reaction mixture was allowed to slowly warm to rt and stirred for ca. 6 h. The
mixture was concentrated in vacuo and then stirred for ca. 16 h in 30:70 ethyl
acetate/hexanes (50 mL) with activated charcoal (2 g), then filtered through a
plug of Celite with 30:70 ethyl acetate/hexanes, and concentrated in vacuo.
Flash chromatography (20:80 ethyl acetate/hexanes) of the residue gave
diketone 4 (0.88 g, 50% yield) and hydroxy phenol 5 (0.22 g, 13% yield). All 1H
NMR spectra matched reported data.
12. Hiroya, K.; Kurihara, Y.; Ogasawara, K. Angew. Chem. Int. Ed. 1995, 34, 2287–
2289.
13. Hoye, T. R.; Eklov, B. M.; Ryba, T. D.; Vologshin, M.; Yao, L. J. Org. Lett. 2004, 6,
953–956.
14. Experimental procedure: Enedione 2 (87 mg, 0.5 mmol, 0.1 M) was added to a
solution of Ru(p-cymene)(S,S-TsDPEN) (4 mg, 0.0067 mmol, 1.3 mol %) in i-
PrOH (5 mL). An aliquot was removed from the reaction mixture and placed
directly into an NMR tube. The progress of the reaction in the NMR tube was
monitored by 1H NMR spectrometry.
Scheme 7. Solvent effect on asymmetric reduction of diketone 4.
In summary, we have identified unexpected substrate, ligand,
and solvent effects in the ATH of polycyclic meso-diketones and a
meso-diol. Given the importance of the Noyori and related ATH
methods in industrial and academic syntheses, these results sug-
gest that a careful exploration of reaction parameters may be
necessary in some substrate classes to optimize chemo- and
enantioselectivities.
Acknowledgments
15. Xue, D.; Chen, Y.-C.; Cui, X.; Wang, Q.-W.; Zhu, J.; Deng, J.-G. J. Org. Chem. 2005,
70, 3584–3591.
16. Marchand, A. P.; LaRoe, W. D.; Sharma, G. V. M.; Suri, S. C.; Reddy, D. S. J. Org.
Chem. 1986, 51, 1622–1625.
We thank NSF (CHE0911638), NIH (P30RR031154) and the
Arkansas Biosciences Institute for support of this work.
17. Hashiguchi, S.; Fujii, A.; Haack, K.-J.; Matsumura, K.; Ikariya, T.; Noyori, R.
Angew. Chem. Int. Ed. 1997, 36, 288–291.
Supplementary data
18. Each reduction was performed at least 3 times. Product yields shown are
representative.
19. Experimental procedures: (a) p-Cymene catalyst: Diol 6 (0.45 g, 2.5 mmol,
Supplementary data associated with this article can be found, in
0.1 M) was added to
a solution of Ru(p-cymene)(S,S-TsDPEN) (0.075 g,
0.125 mmol, 5 mol %) in acetone (25 mL). The reaction mixture was allowed
to stir for ca. 24 h, then concentrated in vacuo. Activated charcoal (2 g) was
added, and the mixture stirred for ca. 16 h in 30:70 ethyl acetate/hexanes
(25 mL). After filtration through a plug of Celite with 30:70 ethyl acetate/
hexanes and concentration in vacuo, the residue was purified by flash
chromatography (20:80 ethyl acetate/hexanes) to give enedione 2 (0.13 g,
30%), diketone 4 (0.11 g, 25%), hydroquinone 5 (0.013 g, 3%), and recovered diol
(20%). (b) Mesitylene catalyst: diol 6 (65 mg, 0.36 mmol, 0.1 M) was added to a
solution of Ru(mesitylene)(S,S-TsDPEN) (3 mg, 0.0049 mmol, 1.3 mol %) in
References and notes
1. Isolation: Fehr, T.; Sanglier, J. J.; Schuler, W.; Gschwind, L.; Ponelle, M.;
Schilling, W.; Wioland, C. J. Antibiot. 1996, 49, 230–233.
2. Total synthesis: Brittain, D. E. A.; Griffiths-Jones, C. M.; Linder, M. R.; Smith, M.
D.; McCusker, C.; Barlow, J. S.; Akiyama, R.; Yasuda, K.; Ley, S. V. Angew. Chem.
Int. Ed. 2005, 44, 2732–2737.