J. Am. Chem. Soc. 2001, 123, 341-342
341
Scheme 1
Formal Total Synthesis of Mycoticin A
Spencer D. Dreher and James L. Leighton*
Department of Chemistry, Columbia UniVersity
New York, New York, 10027
ReceiVed September 27, 2000
The polyene macrolide antibiotics (e.g., the clinically used
amphotericin B) commonly contain a (1,3,5,...) polyol section as
a recurring structural motif.1 We have been engaged in the
development of carbonylation-based approaches to the synthesis
of such structures, and the results of these studies include the
tandem intramolecular silylformylation/allylsilylation,2 and the
oxymercuration/formylation of homoallylic alcohol-derived hemi-
ketals.3 Herein we report the application of these reactions to an
efficient formal total synthesis of the polyene macrolide antibiotic
mycoticin A.
Scheme 2a
a (a) 4 mol % 5, 3,3-diethoxy-1-propene, CH2Cl2, reflux. (b) KH,
PMBBr, THF. (c) PPTS, acetone, H2O, reflux. (d) CH2dCHCH2MgBr,
(+)-B-methoxydiisopinocampheylborane, Et2O, -78 °C; 7, -90 to
23 °C; NaOH, H2O2. (e) HgClOAc, acetone, 20 mol % Yb(OTf)3, -78
to 0 °C. (f) 6 mol % Rh(acac)(CO)2, 6 mol % tris(2,4-di-tert-
butylphenyl)phosphite, 0.50 equiv DABCO, 800 psi 1/1 H2/CO, EtOAc,
50 °C. (g) MeMgBr, Et2O, 0 °C. (h) Dess-Martin periodinane, CH2Cl2.
There has been one total synthesis of mycoticin A, reported
by Schreiber and co-workers in 1993.4,5 We chose as our synthetic
target the fragment 1, a late stage intermediate in Schreiber’s
synthesis which comprises the entire polyol region of mycoticin
A (Scheme 1). In seeking a maximally convergent approach, our
retrosynthetic analysis envisioned cutting the target 1 roughly in
half to methyl ketone 2 and aldehyde 3, each of which might
efficiently be constructed using our carbonylation methodology.
Diastereoselective aldol coupling of these fragments followed by
functional group manipulation would give the completed polyol
fragment 1, and thereby complete a formal total synthesis of
mycoticin A.
The synthesis of ketone 2 (Scheme 2) commenced with
subjection of the known alkene 46 to intermolecular olefin cross-
metathesis with diethoxyacrolein,7 catalyzed by 1,3-dimesityl-
4,5-dihydroimidazol-2-ylideneRu(dCHPh)(Pcy3)Cl2 58 (4 mol %,
CH2Cl2, reflux, 4h), to give the desired (E)-alkene 6 with >20:1
E:Z selectivity. Following protection of the alcohol as its
p-methoxybenzyl (PMB) ether (KH, PMBBr, THF), the acetal
was hydrolyzed under mildly acidic conditions (pyridinium
p-toluenesulfonate (PPTS), acetone, H2O, reflux) to give aldehyde
7 in 62% overall yield from 4 (three steps). Aldehyde 7 was
subjected to Brown’s asymmetric allylation methodology9 to
produce a 10:1 mixture of diastereomers, from which the desired
homoallylic alcohol 8 could be isolated in 71% yield. Treatment
of a solution of 8 in acetone with HgClOAc and 20 mol % Yb-
(OTf)310 led to smooth oxymercuration to afford organomercury
chloride 9 (>20:1 ds) in 75% yield.3b Formylation of organo-
mercury chloride 9 (6 mol % Rh(acac)(CO)2, 6 mol % P(O-2,4-
di-t-BuPh)3, 0.50 equiv 1,4-diazabicyclo[2.2.2]-octane (DABCO),
800 psi 1/1 CO/H2, EtOAc, 50 °C)3c gave aldehyde 10, along
with small amounts of aldehyde byproducts attributable to
hydroformylation of the internal alkene. This mixture was treated
with MeMgBr (Et2O, 0 °C). The resulting alcohols (1:1 mixture
of diastereomers) could be easily purified and were subjected to
oxidation using the Dess-Martin periodinane11 to give the desired
ketone 2 in 58% overall yield from 9 (three steps). The synthesis
of ketone 2 proceeds in nine steps and 14% overall yield from
isobutyraldehyde.
(1) Isolation and structure: (a) Omura, S.; Tanaka, H. In Macrolide Anti-
biotics: Chemistry, Biology and Practice; Omura, S., Ed.; Academic Press:
New York, 1984; pp 351-404. Structure and synthesis: (b) Rychnovsky, S.
D. Chem. ReV. 1995, 95, 2021-2040. Biological Activity: (c) Bolard, J.
Biochim. Biophys. Acta 1986, 864, 257-304. (d) Hartsel, S. C.; Hatch, C.;
Ayenew, W. J. Liposome Res. 1993, 3, 377-408.
(2) (a) Leighton, J. L.; Chapman, E. J. Am. Chem. Soc. 1997, 119, 12416-
12417. (b) Zacuto, M. J.; Leighton, J. L. J. Am. Chem. Soc. 2000, 122, 8587-
8588.
(3) (a) Sarraf, S. T.; Leighton, J. L. Org. Lett. 2000, 2, 403-405. (b) Dreher,
S. D.; Hornberger, K. R.; Sarraf, S. T.; Leighton, J. L. Org. Lett. 2000, 2,
3197-3199. (c) Sarraf, S. T.; Leighton, J. L. Org. Lett. 2000, 2, 3205-3208.
(4) Poss, C. S.; Rychnovsky, S. D.; Schreiber, S. L. J. Am. Chem. Soc.
1993, 115, 3360-3361.
(5) For a recent approach to the synthesis of mycoticin A, see: Smith, A.
B.; Pitram, S. M. Org. Lett. 1999, 1, 2001-2004.
(6) Ghosh, A. K.; Liu. W. J. Org. Chem. 1997, 62, 7908-7909.
(7) (a) O’Leary, D. J.; Blackwell, H. E.; Washenfelder, R. A.; Miura, K.;
Grubbs, R. H. Tetrahedron Lett. 1999, 40, 1091-1094. (b) Blackwell, H. E.;
O’Leary, D. J.; Chatterjee A. K.; Washenfelder, R. A.; Bussmann, D. A.;
Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 58-71. (c) Chatterjee, A. K.;
Morgan, J. P.; Scholl, M.; Grubbs R. H. J. Am. Chem. Soc. 2000, 122, 3783-
3784.
The synthesis of aldehyde 3 (Scheme 3) began with subjection
of known aldehyde 1112 to Brown’s anti-diastereoselective
asymmetric crotylation to afford homoallylic alcohol 12 in 55%
overall yield (three steps from 1,3-propanediol).13 In anticipation
of a tandem intramolecular silylformylation/allylsilylation,2b
(9) Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem.
1986, 51, 432-439.
(10) For this complex diene substrate 8, optimal results were achieved using
a lower temperature and a higher catalyst loading than recommended (5 mol%)
for most substrates. See ref. 3b.
(11) (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4156-4158.
(b) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277-7287.
(12) Angle, S. R.; Bernier, D. S.; El-Said, N. A.; Jones, D. E.; Shaw, S. Z.
Tetrahedron Lett. 1998, 39, 3919-3922.
(13) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1989, 54,
1570-1576.
(8) Scholl, M.; Ding, S.; Lee, C. W., Grubbs, R. H. Org. Lett. 1999, 1,
953-956.
10.1021/ja0035102 CCC: $20.00 © 2001 American Chemical Society
Published on Web 12/21/2000